Enhancing Rice for the Future: Advances in Yield, Resistance, and Climate Adaptability
DOI:
https://doi.org/10.56294/hl2025644Keywords:
Rice plant research, Genetic improvement, CRISPR/Cas9, Climate resilience, Pest and disease resistanceAbstract
Introduction: Rice (Oryza sativa) remains a staple food for over half of the global population, reinforcing the need for continuous scientific innovations to ensure food security. Diverse disciplines—including genetics, biotechnology, agronomy, pest and disease resistance, and climate adaptation—have significantly contributed to rice improvement. This review synthesizes scientific advancements in rice research over the past decade and identifies emerging trends and research gaps.
Methods: A systematic literature review was conducted following the PRISMA framework. Peer-reviewed studies and institutional reports published from 2015 to 2025 were collected from databases such as Scopus, ScienceDirect, JSTOR, and PubMed. The studies were organized into five thematic areas: genetic and molecular advancements, agronomic practices, biotechnological applications, pest and disease resistance, and climate resilience.
Results: Advances in genome sequencing, CRISPR/Cas9 editing, and functional genomics have enabled precise trait improvements. Agronomic practices like optimized transplanting schedules, nano-fertilizers, and biofertilizers enhanced productivity and sustainability. Biotechnological tools, including biofortification and microbial inoculants, improved rice nutritional value and resilience. Pest and disease management benefited from gene pyramiding, molecular markers, and Integrated Pest Management (IPM) strategies. Climate-resilient approaches combined genomics, metabolomics, and traditional knowledge to support environmental adaptation.
Conclusions: While substantial progress has been made, challenges such as biosafety concerns, limited field validation, and farmer adoption persist. Addressing these issues is crucial for translating scientific advancements into practical, sustainable, and climate-resilient rice production systems.
References
Agusta H, Santosa E, Dulbari D, Guntoro D, Zaman S. Continuous heavy rainfall and wind velocity during flowering affect rice production. Agrivita J Agric Sci. 2022;44(2). https://doi.org/10.17503/agrivita.v44i2.2539
Chaudhary A, Venkatramanan V, Mishra A, Sharma S. Agronomic and environmental determinants of direct seeded rice in South Asia. Circ Econ Sustain. 2022;3(1):253-90. https://doi.org/10.1007/s43615-022-00173-x
Chen W, Zhao X. Understanding global rice trade flows: network evolution and implications. Foods. 2023;12(17):3298. https://doi.org/10.3390/foods12173298
Choudhary D, et al. Rice subsector development and farmer efficiency in Nepal. Front Sustain Food Syst. 2022;5. https://doi.org/10.3389/fsufs.2021.740546
Fadah I, Lutfy C, Amruhu A. Analysis of rice trade and food security in Southeast Asian countries. KNE Soc Sci. 2024. https://doi.org/10.18502/kss.v9i21.16772
Hua K, et al. Enhancing rice yield, quality, and resource utilisation. Plant Soil Environ. 2024;70(5):253-62. https://doi.org/10.17221/450/2023-pse
Ladha J, et al. Sustaining productivity in intensive rice cropping. Proc Natl Acad Sci USA. 2021;118(45). https://doi.org/10.1073/pnas.2110807118
Mariyappillai A, Arumugam G, Kumaresan M. Water use efficiency in aerobic rice. J Agrometeorol. 2024;26(2):249-52. https://doi.org/10.54386/jam.v26i2.2550
Yusuf M, et al. Rice production policies and implications. J Multidisiplin Madani. 2024;4(1):174-9. https://doi.org/10.55927/mudima.v4i1.7927
Zamanialaei M, et al. Food sovereignty for rice growers in Iran. Agric Food Secur. 2022;11(1). https://doi.org/10.1186/s40066-022-00386-1
Ansari A, Lin Y, Lur H. Evaluating climate change impacts on rice in Indonesia. Environments. 2021;8(11):117. https://doi.org/10.3390/environments8110117
Bahri T, et al. Climate change and rice production in Aceh. IOP Conf Ser Earth Environ Sci. 2025;1476(1):012060. https://doi.org/10.1088/1755-1315/1476/1/012060
Chawdhery M, et al. Climate change model assessment in Bangladesh. Int J Environ Res Public Health. 2022;19(23):15829. https://doi.org/10.3390/ijerph192315829
Portalanza D, et al. Climate impact on Ecuador rice using Kobayashi model. Agriculture. 2022;12(11):1828. https://doi.org/10.3390/agriculture12111828
Singh A, Arora K, Babu S. Climate change impact on Indian rice. China Agric Econ Rev. 2024;16(2):290-319. https://doi.org/10.1108/caer-07-2023-0179
Skendžić S, et al. Impact of climate change on agricultural pests. Insects. 2021;12(5):440. https://doi.org/10.3390/insects12050440
Wei S, et al. Temperature and radiation effects on rice yield. Atmosphere. 2021;12(12):1541. https://doi.org/10.3390/atmos12121541
Zella A. Climate change implications for Tanzanian rice farmers. Int J Environ Climate Change. 2024;14(1):935-58. https://doi.org/10.9734/ijecc/2024/v14i13912
Gu H, Liang S, Zhao J. Genomic technologies in rice breeding. Agronomy. 2022;12(1):218. https://doi.org/10.3390/agronomy12010218
Fuentes R, et al. Structural variants in 3000 rice genomes. Genome Res. 2019;29(5):870-80. https://doi.org/10.1101/gr.241240.118
Zhang F, et al. Long-read sequencing of 111 rice genomes. Genome Res. https://doi.org/10.1101/gr.276015.121
Yang X, et al. Genomic progress in rice breeding. Genes. 2024;15(5):564. https://doi.org/10.3390/genes15050564
Saeed M. Abiotic stress tolerance in rice. IntechOpen. 2018. https://doi.org/10.5772/intechopen.73571
Singh P, et al. Rice biotechnology and abiotic stress. J Adv Biol Biotechnol. 2024;27(10):863-71. https://doi.org/10.9734/jabb/2024/v27i101509
Ashraf H, et al. Hybrid rice breeding traits. Plants. 2024;13(5):578. https://doi.org/10.3390/plants13050578
Gaballah M, et al. Flowering synchronization in hybrid rice. Sustainability. 2021;13(6):3229. https://doi.org/10.3390/su13063229
Stuecker M, et al. Climate variability and rice in the Philippines. PLoS One. 2018;13(8):e0201426. https://doi.org/10.1371/journal.pone.0201426
Datta P, et al. Climate change and rice. Asian J Agric Hortic Res. 2019;4(2):1-4. https://doi.org/10.9734/ajahr/2019/v4i230015
Thiruppathi A, et al. CRISPR/Cas9 for rice yield traits. Plants. 2024;13(21):2972. https://doi.org/10.3390/plants13212972
Fiaz S, et al. CRISPR/Cas9 in rice grain quality. Int J Mol Sci. 2019;20(4):888. https://doi.org/10.3390/ijms20040888
Singh P, et al. Genome editing and resistance genes in rice. Front Genome Edit. 2024;6. https://doi.org/10.3389/fgeed.2024.1415244
Yu K, et al. Gene-edited, BLB-resistant rice. BMC Plant Biol. 2021;21(1). https://doi.org/10.1186/s12870-021-02979-7
Shaheen N, et al. CRISPR-Cas and climate-resilient rice. Rice. 2023;16(1). https://doi.org/10.1186/s12284-023-00652-1
Mi X, et al. CRISPR/Cas9 applications in rice. Highlights Sci Eng Technol. 2023;74:297-301. https://doi.org/10.54097/4z9f5b17
Peng S, et al. GWAS on rice plant height. Int J Mol Sci. 2023;24(14):11454. https://doi.org/10.3390/ijms241411454
Zhang Q, et al. PPR756 and pollen development in rice. Front Plant Sci. 2020;11. https://doi.org/10.3389/fpls.2020.00749
Yun Y, et al. Transplanting date and grain traits in rice. Preprints. 2023. https://doi.org/10.20944/preprints202303.0036.v1
Kandel S, et al. Azolla application and rice production. Trop Agroecosyst. 2020;1(2):103-6. https://doi.org/10.26480/taec.02.2020.103.106
Mugesh A, Perumal M. Nano urea and rice performance. Int J Res Agron. 2024;7(8S):107-9. https://doi.org/10.33545/2618060x.2024.v7.i8sb.1198
Pan S, et al. Plant growth regulators in rice. Rice. 2013;6(1). https://doi.org/10.1186/1939-8433-6-9
Sultana S, et al. GA₃ and aromatic rice performance. JST. 2024;22(1-2):48-56. https://doi.org/10.59125/jst.22105
Wang D, et al. Optimizing hill seeding in hybrid rice. PLoS One. 2014;9(10):e109417. https://doi.org/10.1371/journal.pone.0109417
Li R, et al. Rice yield and yield-related traits in China. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00543
Zhu C, et al. OsRELA and rice leaf inclination. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.760041
Stuart A, et al. Yield gaps in rice systems. Field Crops Res. 2016;194:43-56. https://doi.org/10.1016/j.fcr.2016.04.039
Usman B, et al. Editing OsPYL9 enhances drought tolerance in rice. Int J Mol Sci. 2020;21(21):7854. https://doi.org/10.3390/ijms21217854
Usman B, et al. High-yield fragrant rice via CRISPR/Cas9 mutagenesis. Plants. 2020;9(6):788. https://doi.org/10.3390/plants9060788
Devarajan A, et al. Phyllosphere bacteria induce drought tolerance in rice. Plants. 2021;10(2):387. https://doi.org/10.3390/plants10020387
Hefferon K. Zinc-enriched crops via biotechnology. Nutrients. 2019;11(2):253. https://doi.org/10.3390/nu11020253
Chen R, et al. Decades of rice functional genomics. Sci China Life Sci. 2021;65(1):33-92. https://doi.org/10.1007/s11427-021-2024-0
Usman B, et al. Editing OsSPL16 improves grain yield in rice. Int J Mol Sci. 2020;22(1):249. https://doi.org/10.3390/ijms22010249
Yang K, et al. Screening for BPH resistance in rice germplasm. Mol Breed. 2023;43(9). https://doi.org/10.1007/s11032-023-01416-x
Wang C, et al. Pyramiding BPH genes for resistance in rice. Pest Manag Sci. 2023;80(4):1740-50. https://doi.org/10.1002/ps.7902
Luo H, et al. PCR markers for BLB resistance in rice. Life. 2023;13(10):2101. https://doi.org/10.3390/life13102101
Saxena H, et al. GWAS for blast resistance in super rice. Plant Pathol. 2025;74(4):968-84. https://doi.org/10.1111/ppa.14062
Dhakal A, Poudel S. IPM and its application in rice. Rev Food Agric. 2020;1(2):54-8. https://doi.org/10.26480/rfna.02.2020.54.58
Iftikhar R, et al. Biological control of rice insect pests. Agrobiol Rec. 2023;12. https://doi.org/10.47278/journal.abr/2023.016
Han Y, et al. Resistance in rice lines with BPH14/15 genes. PLoS One. 2018;13(6):e0198630. https://doi.org/10.1371/journal.pone.0198630
Pattanaik K. VOCs for rice pest management. Physiol Plant. 2025;177(3). https://doi.org/10.1111/ppl.70240
Agnese F, Othman Z. SRI response to climate change. J Technol Oper Manag. 2019;14(1):43-53. https://doi.org/10.32890/jtom2019.14.1.5
Loko Y, et al. On-farm rice diversity and farmer perception. Econ Bot. 2021;75(1):1-29. https://doi.org/10.1007/s12231-021-09515-6
Song E, et al. NMR metabolomics in rice grain profiling. J Agric Food Chem. 2016;64(15):3009-16. https://doi.org/10.1021/acs.jafc.5b05667
Garg R, et al. DNA methylation and gene expression in rice. Sci Rep. 2015;5(1). https://doi.org/10.1038/srep14922
Kole C, et al. Genomics-assisted breeding for resilient crops. Front Plant Sci. 2015;6. https://doi.org/10.3389/fpls.2015.00563
Wihardjaka A, Pramono A, Sutriadi M. Climate adaptive rice tech in rainfed fields. J Sumberdaya Lahan. 2020;14(1):25-36. https://doi.org/10.21082/jsdl.v14n1.2020.25-36
Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, et al. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci. 2015;6:563. https://doi.org/10.3389/fpls.2015.00563
Wihardjaka A, Pramono A, Sutriadi M. Peningkatan produktivitas padi sawah tadah hujan melalui penerapan teknologi adaptif dampak perubahan iklim. J Sumberdaya Lahan. 2020;14(1):25–36. https://doi.org/10.21082/jsdl.v14n1.2020.25-36
Downloads
Published
Issue
Section
License
Copyright (c) 2025 VanjoreehA. Madale, Ma. Reina Suzette B. Madamba, Monera A. Salic-Hairulla, Liezel P. Naquines (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.