Curcumin promote autophagy via miR-582-5p and Akt/mTOR axis
DOI:
https://doi.org/10.56294/hl2025628Keywords:
Curcumin, miR-582-5p, DDP resistance, cervical cancer, autophagyAbstract
Objective: This study aimed to investigate the role of Curcumin in modulating miR-582-5p expression in cisplatin (DDP)-resistant cervical cancer cells.
Methods: miR-582-5p expression levels were quantified by qPCR. Cell viability following DDP treatment was assessed using the CCK-8 assay. Colony formation ability was evaluated, and the expression of autophagy-related proteins (ATG7, Beclin-1, LC3-II/I) as well as the phosphorylation status of Akt and mTOR were analyzed by Western blotting.
Results: miR-582-5p expression was downregulated in DDP-resistant tissues and in Hela/DDP and SiHa/DDP cells. Curcumin treatment reduced the IC50 values of both cell lines and suppressed colony formation. Curcumin upregulated ATG7, Beclin-1, and LC3-II/I expression in DDP-resistant Hela and SiHa cells, while concurrently inhibiting the phosphorylation of Akt and mTOR. miR-582-5p modulated Akt phosphorylation and influenced Curcumin-induced autophagy in these resistant cell lines. Additionally, the phosphorylation status of Akt affected the autophagic response to Curcumin.
Conclusions: Curcumin enhances autophagy in DDP-resistant cervical cancer cells, accompanied by downregulation of miR-582-5p and inhibition of Akt/mTOR phosphorylation.
References
1. Huang, D. and C. Li, circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis. Oncol Lett, 2021. 22(5): p. 795. DOI: https://doi.org/10.3892/ol.2021.13056
2. Wang, J., et al., Circ_0042986 Presence Restrains Cervical Cancer Development via Upregulating PEG3 by Directly Targeting miR-582-3p. Reprod Sci, 2023. 30(3): p. 890-902. DOI: https://doi.org/10.1007/s43032-022-01053-3
3. Xu, J., et al., circEYA1 Functions as a Sponge of miR-582-3p to Suppress Cervical Adenocarcinoma Tumorigenesis via Upregulating CXCL14. Mol Ther Nucleic Acids, 2020. 22: p. 1176-1190. DOI: https://doi.org/10.1016/j.omtn.2020.10.026
4. Zhai, L.L., et al., Curcumin inhibits the invasion and migration of pancreatic cancer cells by upregulating TFPI-2 to regulate ERK- and JNK-mediated epithelial-mesenchymal transition. Eur J Nutr, 2024. 63(2): p. 639-651. DOI: https://doi.org/10.1007/s00394-023-03296-5
5. Ravindran, F., et al., Curcumin modulates cell type-specific miRNA networks to induce cytotoxicity in ovarian cancer cells. Life Sci, 2023. 334: p. 122224. DOI: https://doi.org/10.1016/j.lfs.2023.122224
6. Zhang, B., et al., Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. Phenomics, 2024. 4(3): p. 257-268. DOI: https://doi.org/10.1007/s43657-023-00146-6
7. Qian, Z., et al., Understanding health literacy from a traditional Chinese medicine perspective. J Integr Med, 2023. 21(3): p. 215-220. DOI: https://doi.org/10.1016/j.joim.2023.03.001
8. Firouzjaei, A.A., et al., Impact of curcumin on ferroptosis-related genes in colorectal cancer: Insights from in-silico and in-vitro studies. Cell Biochem Funct, 2023. 41(8): p. 1488-1502. DOI: https://doi.org/10.1002/cbf.3889
9. Srinivas, A.N., et al., Apoptosis antagonizing transcription factor-mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis-hepatocellular carcinoma. J Cell Physiol, 2024. 239(1): p. 135-151. DOI: https://doi.org/10.1002/jcp.31151
10. Zahedi, M., et al., The effect of curcumin on hypoxia in the tumour microenvironment as a regulatory factor in cancer. Arch Med Sci, 2023. 19(6): p. 1616-1629. DOI: https://doi.org/10.5114/aoms/171122
11. Suwannasom, N., et al., Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study. Beilstein J Nanotechnol, 2023. 14: p. 1127-1140. DOI: https://doi.org/10.3762/bjnano.14.93
12. Hu, Y., et al., LINC00641/miR-582-5p mediate oxaliplatin resistance by activating autophagy in gastric adenocarcinoma. Sci Rep, 2020. 10(1): p. 14981. DOI: https://doi.org/10.1038/s41598-020-70913-2
13. Zhao, T., et al., Paclitaxel Resistance Modulated by the Interaction between TRPS1 and AF178030.2 in Triple-Negative Breast Cancer. Evid Based Complement Alternat Med, 2022. 2022: p. 6019975. DOI: https://doi.org/10.1155/2022/6019975
14. Jang, B.Y., et al., Curcumin Disrupts a Positive Feedback Loop between ADMSCs and Cancer Cells in the Breast Tumor Microenvironment via the CXCL12/CXCR4 Axis. Pharmaceutics, 2023. 15(11). DOI: https://doi.org/10.3390/pharmaceutics15112627
15. Atwan, Q.S. and I. Al-Ogaidi, Improving the targeted delivery of curcumin to esophageal cancer cells via a novel formulation of biodegradable lecithin/chitosan nanoparticles with downregulated miR-20a and miR-21 expression. Nanotechnology, 2024. 35(13). DOI: https://doi.org/10.1088/1361-6528/ad15b9
16. Ahmadi, F., et al., Nanohybrid Based on (Mn, Zn) Ferrite Nanoparticles Functionalized With Chitosan and Sodium Alginate for Loading of Curcumin Against Human Breast Cancer Cells. AAPS PharmSciTech, 2023. 24(8): p. 222. DOI: https://doi.org/10.1208/s12249-023-02683-9
17. Xi, G., et al., Curcumin's Dose-Dependent Attenuation of Gastric Cancer Cell Progression Via the PI3K Pathway Blockade. Dose Response, 2023. 21(4): p. 15593258231203585. DOI: https://doi.org/10.1177/15593258231203585
18. Verma, R., et al., Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations. Recent Pat Nanotechnol, 2024. 18(3): p. 278-294. DOI: https://doi.org/10.2174/1872210517666230823155328
19. Govahi, A., et al., Antitumor Effects of Curcumin on Cervical Cancer with the Focus on Molecular Mechanisms: An Exegesis. Curr Pharm Des, 2023. 29(42): p. 3385-3399. DOI: https://doi.org/10.2174/0113816128279330231129180250
20. Li, M., et al., Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. Int J Biol Macromol, 2024. 254(Pt 2): p. 127836. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127836
21. Wu, S.M., et al., Long Non-Coding RNA ZEB2-AS1 Promotes Hepatocellular Carcinoma Progression by Regulating The miR-582-5p/FOXC1 Axis. Cell J, 2022. 24(6): p. 285-293.
22. Zhao, Y., et al., Use of miRNA Sequencing to Reveal Hub miRNAs and the Effect of miR-582-3p/SMAD2 in the Progression of Hepatocellular Carcinoma. Front Genet, 2022. 13: p. 819553. DOI: https://doi.org/10.3389/fgene.2022.819553
23. Wang, C. and X. Yang, CircRAPGEF5 sponges miR-582-3p and targets KIF3A to regulate bladder cancer cell proliferation, migration and invasion. Int Immunopharmacol, 2024. 131: p. 111613. DOI: https://doi.org/10.1016/j.intimp.2024.111613
24. Hu, X., J. Wu, and J. Xu, UCA1 executes an oncogenic role in pancreatic cancer by regulating miR-582-5p/BRCC3. Front Oncol, 2023. 13: p. 1133200. DOI: https://doi.org/10.3389/fonc.2023.1133200
25. Li, R., et al., miR-582-5p targets Skp1 and regulates NF-kappaB signaling-mediated inflammation. Arch Biochem Biophys, 2023. 734: p. 109501. DOI: https://doi.org/10.1016/j.abb.2022.109501
26. Jing, X.F., et al., Circular RNA_0001073 (circ_0001073) Suppresses The Progression of Non-Small Cell Lung Cancer via miR-582-3p/RGMB Axis. Cell J, 2021. 23(6): p. 684-691.
27. Luo, H. and Z. Ye, Identification of Serum miR-337-3p, miR-484, miR-582, and miR-3677 as Promising Biomarkers for Osteosarcoma. Clin Lab, 2021. 67(4). DOI: https://doi.org/10.7754/Clin.Lab.2020.200455
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dandan Huang , Adilsaikhan Mendjargal, Erdenezaya Odkhuu, Damdindorj Boldbaatar, Hairong Guo, Bolorchimeg Baldandorj (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.