Implementation of machine learning algorithms to identify stress and anxiety levels in the personnel of a northern public mobility company

Authors

DOI:

https://doi.org/10.56294/hl2024.523

Keywords:

Occupational health, machine learning technique, stress, anxiety, workers

Abstract

This scientific article analyzes the use of machine learning techniques to identify levels of stress and anxiety among workers of the Empresa Pública de Movilidad del Norte. The problem lies in the high levels of stress and anxiety present in the staff. The company, committed to the prevention of occupational risks and the physical and mental well-being of its employees, implemented a control system based on an analytical-synthetic approach. These techniques processed data, identified patterns and improved their accuracy with each analysis. Through interviews with the manager, head of Human Resources and occupational physician, along with employee surveys, stress control and quality of work life were improved

References

1. Gallegos M. Castillo T. Eficiencia, carga de trabajo, salud y seguridad ocupacional en la industria de la construcción en las principales ciudades del Ecuador. NOVASINERGIA REVISTA DIGITAL DE CIENCIA, INGENIERÍA Y TECNOLOGÍA [Internet]. 2022;5(1):150–62. Available from: http://dx.doi.org/10.37135/ns.01.09.09

2. Pazmay Ramos SG, Lima Rojas D. Clima Laboral en Empresas Ecuatorianas Fabricantes de Carrocerías: Caso CANFAC. Podium [Internet]. 2020;37:15–26. Available from: http://dx.doi.org/10.31095/podium.2020.37.2

3. Yaulilahua-Huacho R. Influencia del Clima Organizacional en el Rendimiento Laboral: Un Estudio Empírico en la Industria de Telecomunicaciones 2022. Journal of Economic and Social Science Research [Internet]. 2023 [cited 2025 Jan 18];3(3):25–38. Available from: https://economicsocialresearch.com/index.php/home/article/view/71

4. Matabanchoy-Tulcán SM, Álvarez-Pabón KM, Riobamba-Jiménez OD. Efectos de la evaluación de desempeño en la calidad de vida laboral del trabajador: Revisión del tema entre 2008-2018. Univ Salud [Internet]. 2019;21(2):176–87. Available from: http://dx.doi.org/10.22267/rus.192102.152

5. Bustamante, R. Y. S., Gonzabay, P. L. M., & Peñafiel, N. A. V. Clima Organizacional como factor del desempeño laboral en las Mipymes en Ecuador. Dominio de las Ciencias, [Internet]. 2022;8(1),234-261. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=8383360

6. Rodríguez Carvajal R, Rivas Hermosilla S de. Los procesos de estrés laboral y desgaste profesional (burnout): diferenciación, actualización y líneas de intervención. Med Segur Trab (Madr) [Internet]. 2011;57:72–88. Available from: http://dx.doi.org/10.4321/s0465-546x2011000500006

7. Gálvis YTD. Costos asociados con la salud mental. Revista Ciencias de la Salud [Internet]. 2018;16(2):182–7. Available from: http://www.scielo.org.co/scielo.php?pid=S1692-72732018000200182&script=sci_arttext

8. Mochizuki K, Shintani R, Mori K, Sato T, Sakaguchi O, Takeshige K, et al. Importance of respiratory rate for the prediction of clinical deterioration after emergency department discharge: a single‐center, case–control study. Acute Med Surg [Internet]. 2017;4(2):172–8. Available from: http://dx.doi.org/10.1002/ams2.252

9. Del Rocío Aldaz Quinto MA, Torres MWY, Ramírez MNA, Campaña MCM. Clima organizacional y desempeño laboral. Ciencia Latina [Internet]. 2022 [cited 2025 Jan 18];6(1):1382–93. Available from: https://www.ciencialatina.org/index.php/cienciala/article/view/1588

10. Olivera-Garay YJ, Leyva-Cubillas LL, Napán-Yactayo AC. Organizational climate and its influence on the work performance of workers. Rev Cient UCSA [Internet]. 2021;8(2):3–12. Available from: http://dx.doi.org/10.18004/ucsa/2409-8752/2021.008.02.003.

Downloads

Published

2024-12-30

How to Cite

1.
Díaz Vásquez RA, Acosta Espinoza JL, Ayala Díaz KA, León Yacelga AR. Implementation of machine learning algorithms to identify stress and anxiety levels in the personnel of a northern public mobility company. Health Leadership and Quality of Life [Internet]. 2024 Dec. 30 [cited 2025 Aug. 24];3:.523. Available from: https://hl.ageditor.ar/index.php/hl/article/view/523