Artificial intelligence in strengthening health services: a critical analysis of the literatura
DOI:
https://doi.org/10.56294/hl2024.422Keywords:
Artificial intelligence, health services, ethics in AI, medical personalization, technological equityAbstract
Artificial intelligence (AI) is redefining healthcare services, offering innovative solutions that improve diagnostic accuracy, optimize resources, and personalize healthcare. This article analyzes the impact of AI on the healthcare sector through a semi-systematic review of the literature published between 2020 and 2024. Key trends are highlighted, such as the use of predictive algorithms in early diagnosis, the implementation of digital platforms for patient management, and the development of personalized therapies based on big data. Ethical challenges associated with the use of AI are also examined, such as data privacy, algorithm transparency, and equity in access to these technologies. The discussion addresses how interdisciplinary collaborations and professional training are essential to ensure effective and responsible adoption of AI in healthcare. Finally, the need to design inclusive and sustainable strategies that promote the use of AI as a complementary tool to human care is raised, contributing to a more efficient, equitable healthcare system focused on people's well-being. This analysis seeks to lay the groundwork for future research and applications in the field.
References
1. Sunarti S, Fadzlul Rahman F, Naufal M, Risky M, Febriyanto K, Masnina R. Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria. 2021;35:S67–70. https://doi.org/10.1016/j.gaceta.2020.12.019
2. Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation & Knowledge. 2023;8(1):100333. https://doi.org/10.1016/j.jik.2023.100333
3. Kammerer David MI, Murgas Téllez B. La innovación tecnológica desde un enfoque de dinámica de sistema. Región Científica. 2024;3(1):2024217. https://doi.org/10.58763/rc2024217
4. Wubineh BZ, Deriba FG, Woldeyohannis MM. Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review. Urologic Oncology: Seminars and Original Investigations. 2024;42(3):48–56. https://doi.org/10.1016/j.urolonc.2023.11.019
5. Kumar P, Chauhan S, Awasthi LK. Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence. 2023;120:105894. https://doi.org/10.1016/j.engappai.2023.105894
6. Chakravarty K, Antontsev V, Bundey Y, Varshney J. Driving success in personalized medicine through AI-enabled computational modeling. Drug Discovery Today. 2021;26(6):1459–65. https://doi.org/10.1016/j.drudis.2021.02.007
7. Zahra MA, Al-Taher A, Alquhaidan M, Hussain T, Ismail I, Raya I, et al. The synergy of artificial intelligence and personalized medicine for the enhanced diagnosis, treatment, and prevention of disease. Drug Metabolism and Personalized Therapy. 2024;39(2):47–58. https://doi.org/10.1515/dmpt-2024-0003
8. Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, et al. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomedicine & Pharmacotherapy. 2023;163:114784. https://doi.org/10.1016/j.biopha.2023.114784
9. Siala H, Wang Y. SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Social Science & Medicine. 2022;296:114782. https://doi.org/10.1016/j.socscimed.2022.114782
10. Padilla Hernández SG. Inteligencia Artificial en los servicios bancarios. Una revisión bibliométrica. Región Científica. 2024;3(2):2024335. https://doi.org/10.58763/rc2024335
11. Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns. 2021;2(10):100347. https://doi.org/10.1016/j.patter.2021.100347
12. Gomez Cano CA, Sánchez Castillo V, Eslava Zapata R. Factores motivacionales para estudiantes universitarios en la postpandemia. Psiquemag. 2024;13(2):121–31. https://doi.org/10.18050/psiquemag.v13i2.3132
13. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health. 2021;3(11):e745–50. https://doi.org/10.1016/S2589-7500(21)00208-9
14. Valladolid Benavides AM, Neyra Cornejo FI, Hernández Hernández O, Callupe Cueva PC, Akintui Antich JP. Adicción a redes sociales en estudiantes de una universidad nacional de Junín (Perú). Región Científica. 2023;2(1):202323. https://doi.org/10.58763/rc202353
15. Alanazi A. Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked. 2022;30:100924. https://doi.org/10.1016/j.imu.2022.100924
16. Kumar P, Sharma SK, Dutot V. Artificial intelligence (AI)-enabled CRM capability in healthcare: The impact on service innovation. International Journal of Information Management. 2023;69:102598. https://linkinghub.elsevier.com/retrieve/pii/S0268401222001323
17. Pérez Valdivia YO, Rojas Sánchez GA, Sánchez Castillo V, Pérez Gamboa AJ. La categoría bienestar psicológico y su importancia en la práctica asistencial: una revisión semisistemática. Revista Información Científica. 2024;103:19. http://scielo.sld.cu/scielo.php?pid=S1028-99332024000100018&script=sci_arttext
18. Velásquez Castro LA, Paredes-Águila JA. Revisión sistemática sobre los desafíos que enfrenta el desarrollo e integración de las tecnologías digitales en el contexto escolar chileno, desde la docencia. Región Científica. 2024;3(1):2024226. https://doi.org/10.58763/rc2024226
19. Pérez Gamboa AJ, Gómez Cano CA, Sánchez Castillo V. Decision making in university contexts based on knowledge management systems. Data and Metadata. 2022;1:92. https://doi.org/10.56294/dm202292
20. Bag S, Dhamija P, Singh RK, Rahman MS, Sreedharan VR. Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research. 2023;154:113315. https://doi.org/10.1016/j.jbusres.2022.113315
21. Roppelt JS, Kanbach DK, Kraus S. Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors. Technology in Society. 2024;76:102443. https://doi.org/10.1016/j.techsoc.2023.102443
22. Ye T, Xue J, He M, Gu J, Lin H, Xu B, et al. Psychosocial Factors Affecting Artificial Intelligence Adoption in Health Care in China: Cross-Sectional Study. Journal of Medical Internet Research. 2019;21(10):e14316. https://doi.org/10.2196/14316
23. Alkhaldi M, Abu Joudeh L, Ahmed YB, Husari KS. Artificial intelligence and telemedicine in epilepsy and EEG: A narrative review. Seizure: European Journal of Epilepsy. octubre de 2024;121:204–10. https://doi.org/10.1016/j.seizure.2024.08.024
24. Gómez-Cano CA, Sánchez-Castillo V, Eslava-Zapata R. Bibliometric analysis of the main applications of digital technologies to business management. Data and Metadata. 2024;3:321. https://doi.org/10.56294/dm2024321
25. Huang JA, Hartanti IR, Colin MN, Pitaloka DA. Telemedicine and artificial intelligence to support self-isolation of COVID-19 patients: Recent updates and challenges. DIGITAL HEALTH. enero de 2022;8:205520762211006. https://doi.org/10.1177/20552076221100634
26. Zahlan A, Ranjan RP, Hayes D. Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research. Technology in Society. agosto de 2023;74:102321. https://doi.org/10.1016/j.techsoc.2023.102321
27. Sánchez-Suárez Y, Sánchez-Castillo V, Gómez-Cano CA. Dashboard for assessing patient flow management in hospital institutions. DYNA. 2024;91(232):49–57. https://doi.org/10.15446/dyna.v91n232.111259
28. Khan B, Fatima H, Qureshi A, Kumar S, Hanan A, Hussain J, et al. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomedical Materials & Devices. 2023;1(2):731–8. https://doi.org/10.1007/s44174-023-00063-2
29. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. el 22 de septiembre de 2023;23(1):689. https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-04698-z
30. Brown JEH, Halpern J. AI chatbots cannot replace human interactions in the pursuit of more inclusive mental healthcare. SSM - Mental Health. diciembre de 2021;1:100017. https://linkinghub.elsevier.com/retrieve/pii/S2666560321000177
31. Balcombe L, De Leo D. Human-Computer Interaction in Digital Mental Health. Informatics. 2022;9(1):14. https://doi.org/10.3390/informatics9010014
32. Cheng X, Zhang X, Cohen J, Mou J. Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Information Processing & Management. 2022;59(3):102940. https://doi.org/10.1016/j.ipm.2022.102940
33. Rony MKK, Numan SMd, Akter K, Tushar H, Debnath M, Johra FT, et al. Nurses’ perspectives on privacy and ethical concerns regarding artificial intelligence adoption in healthcare. Heliyon. 2024;10(17):e36702. https://doi.org/10.1016/j.heliyon.2024.e36702
34. Khanijahani A, Iezadi S, Dudley S, Goettler M, Kroetsch P, Wise J. Organizational, professional, and patient characteristics associated with artificial intelligence adoption in healthcare: A systematic review. Health Policy and Technology. marzo de 2022;11(1):100602. https://doi.org/10.1016/j.hlpt.2022.100602
35. Abadie A, Roux M, Chowdhury S, Dey P. Interlinking organisational resources, AI adoption and omnichannel integration quality in Ghana’s healthcare supply chain. Journal of Business Research. 2023;162:113866. https://doi.org/10.1016/j.jbusres.2023.113866
36. Dávila Panduro SK, Dávila Arbaiza G, Li Loo Kung CA. La herramienta Jamboard en la mejora de las exposiciones virtuales universitarias. Región Científica. 2024 3(1):2024256. https://doi.org/10.58763/rc2024256
37. Ahuja AS, Polascik BW, Doddapaneni D, Byrnes ES, Sridhar J. The digital metaverse: Applications in artificial intelligence, medical education, and integrative health. Integrative Medicine Research. marzo de 2023;12(1):100917. https://linkinghub.elsevier.com/retrieve/pii/S2213422022000841
38. Gonzales Tito YM, Quintanilla López LN, Pérez Gamboa AJ. Metaverse and education: a complex space for the next educational revolution. Metaverse Basic and Applied Research. 2023;2:56. https://doi.org/10.56294/mr202356
39. Wu TC, Ho CTB. A scoping review of metaverse in emergency medicine. Australasian Emergency Care. 2023;26(1):75–83. https://linkinghub.elsevier.com/retrieve/pii/S2588994X22000525
40. Debortoli DO, Brignole NB. Inteligencia empresarial para estimular el giro comercial en el microcentro de una ciudad de tamaño intermedio. Región Científica. 2024;3(1):2024195. https://doi.org/10.58763/rc2024195
41. Hua D, Petrina N, Young N, Cho JG, Poon SK. Understanding the factors influencing acceptability of AI in medical imaging domains among healthcare professionals: A scoping review. Artificial Intelligence in Medicine. 2024;147:102698. https://doi.org/10.1016/j.artmed.2023.102698
42. Li J, Dada A, Puladi B, Kleesiek J, Egger J. ChatGPT in healthcare: A taxonomy and systematic review. Computer Methods and Programs in Biomedicine. 2024;245:108013. https://doi.org/10.1016/j.cmpb.2024.108013
43. Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. The Lancet Digital Health. 2022;4(11):e829–40. https://doi.org/10.1016/S2589-7500(22)00153-4
44. Barrera León D, Tello Flores RY, Ramos Guzmán FR, Pérez Gamboa AJ. Acompañamiento a la promoción de proyectos de vida de jóvenes seropositivos. Un estudio cualitativo complejo. Región Científica. 2024;3(1):2024248. https://doi.org/10.58763/rc2024248
45. González Argote J, López Sánchez AA, Pérez Gamboa AJ. Principales tendencias sobre salud mental en el campo de la Psicología: una revisión mixta en Scopus. Psiquemag. 2024;13(2):35–55. https://doi.org/10.18050/psiquemag.v13i2.3135
46. Lee EE, Torous J, De Choudhury M, Depp CA, Graham SA, Kim HC, et al. Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. septiembre de 2021;6(9):856–64. https://doi.org/10.1016/j.bpsc.2021.02.001
47. Gönül S, Namlı T, Coşar A, Toroslu İH. A reinforcement learning based algorithm for personalization of digital, just-in-time, adaptive interventions. Artificial Intelligence in Medicine. mayo de 2021;115:102062. https://doi.org/10.1016/j.artmed.2021.102062
48. Chen RJ, Wang JJ, Williamson DFK, Chen TY, Lipkova J, Lu MY, et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature Biomedical Engineering. el 28 de junio de 2023;7(6):719–42. https://doi.org/10.1038/s41551-023-01056-8
49. Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology. enero de 2024;42(1):3–15. https://doi.org/10.1007/s11604-023-01474-3
50. Posada López JM, Severiche Sierra CA, Buelvas Almanza KP. Legal framework and procedures of occupational health. A hermeneutic analysis. Reg Cient. el 1 de julio de 2024;3(2):2024336. https://rc.cienciasas.org/index.php/rc/article/view/336
51. Muñoz Bonilla HA, Menassa Garrido IS, Rojas Coronado L, Espinosa Rodríguez MA. La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica. 2024;3(1):2024214. https://doi.org/10.58763/rc2024214
52. Raudales-Garcia EV, Acosta-Tzin JV, Aguilar-Hernández PA. Economía circular: una revisión bibliométrica y sistemática. Región Científica. 2024;3(1):2024192. https://doi.org/10.58763/rc2024192
53. Herath HMKKMB, Mittal M. Adoption of artificial intelligence in smart cities: A comprehensive review. International Journal of Information Management Data Insights. abril de 2022;2(1):100076. https://doi.org/10.1016/j.jjimei.2022.100076
54. González-Argote J, Sánchez-Castillo V, Gómez Cano CA. Economía verde, estado del campo y líneas futuras en el marco del desarrollo sostenible. Suma de Negocios. 2024;15(32):70–80. https://doi.org/10.14349/sumneg/2024.v15.n32.a8
55. Kumar A, Mani V, Jain V, Gupta H, Venkatesh VG. Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers & Industrial Engineering. enero de 2023;175:108815. https://doi.org/10.1016/j.cie.2022.108815
56. Sánchez Suárez Y, Pérez Gamboa AJ, Hernández Nariño A, Díaz-Chieng LY, Marqués León M, Pancorbo Sandoval JA, et al. Hospital culture and social responsibility: a mixed study of the main lines for its development. Salud, Ciencia y Tecnología - Serie de Conferencias. 2023;2:451. https://doi.org/10.56294/sctconf2023451
57. Zapata Muriel FA, Montoya Zapata S, Montoya-Zapata D. Dilemas éticos planteados por el auge de la inteligencia artificial: una mirada desde el transhumanismo. Región Científica. 2024;3(1):2024225. https://doi.org/10.58763/rc202422
Published
Issue
Section
License
Copyright (c) 2024 Ana Maria Chaves Cano, Alfredo Javier Pérez Gamboa (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.