Analysis of antibody titers according to anti-SARS-CoV-2 vaccination schedules, assessed through protein S, discriminated according to history of Covid-19 disease, comorbidities, age and sex. City of San Lorenzo, period October-November 2021
DOI:
https://doi.org/10.56294/hl2024.274Keywords:
Covid-19, SARS-CoV-2, Protein S, Vaccines, Immune response, Antibodies, AntibioticsAbstract
Introduction: Coronavirus 2019 (Covid-19) is a severe acute respiratory syndrome caused by a new coronavirus called SARS-CoV-2. Rapid and effective transmission led to its global spread, with the World Health Organization declaring it a pandemic on March 11, 2020. In spite of the little and recent information on this new disease, it was a race against time for many countries to create vaccines that would reduce the mortality rate, the hospitalization period and the rate of contagion worldwide. Viral surface protein S was identified as an optimal antigen for vaccine development.
Objectives: To describe the humoral response to different anti-SARS-CoV-2 vaccination schedules, assessed by protein S, in the population of San Lorenzo, Santa Fe, Argentina.
Material and Methods: The present study, of a descriptive and cross-sectional nature, was carried out based on the sampling of people who voluntarily attended the DetectAR Campaign, organized by the Municipality of San Lorenzo during the months of October and November 2021. In the selection of the sample, those who complied with the complete vaccination schedule (two doses of SP, SP+MO, AZ or SINO) were included and the measurement of antibodies in serum was performed by means of the Elecsys® Anti-SARS-CoV-2 test.
Results: 319 participants were included, age was 52 ± 14 years. Anti-S antibody titers developed in 99.3% of the participants, with the exception of 0.6%, vaccinated with Sinopharm scheme. The median antibody titer against the RBD domain was 250 U/mL (250-233.4). The minimum value was 1 U/mL. Levels ≥ 250 U/mL (maximum reported level of antibody determined by the test) were found in 74.3% of participants. The SINO scheme yielded a median of 169.5 U/mL (250-33.8) and a mean of 142.2 ± 105.3 U/mL, comparatively lower than the rest of the schemes. The female sex presented a median of 203.8 ± 83.7 U/mL, while that of the male sex was 213.5 ± 78.9 U/mL. The median in participants ≥ 65 years was 250 U/mL (250-250) and in subjects ≤ 64 years was 250 U/mL (250-195.2). 76.5% of participants with comorbidities (n: 34) achieved peak antibody titers. 72.8% of participants who denied having had the disease (n:196) developed titers greater than 250 U/ml.
Conclusions: All participants developed Anti-S antibody titers, with the exception of two participants vaccinated with Sinopharm scheme. The population with Covid-19 (+) background presented higher antibody titers. However, no differences were found in the quantification of the Anti-S humoral response according to the variables sex, associated comorbidities or in persons ≥ 65 years with respect to the rest of the sample
References
1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in
Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;
382(13):1199–207. doi:10.1056/NEJMoa2001316.
2. Ibáñez Guelfenbein C, Torres Torretti JP, Santolaya de Pablo ME. SARS CoV-2 Vaccine studies currently in phase III. Rev Chilena Infectol. 2021. 38(1):88–98. doi:
10.4067/S0716-10182021000100088
3. COVID-19 Map. Johns Hopkins Coronavirus Resource Center. 2022. Disponible en: https://coronavirus.jhu.edu/map.html
4. Ashraf O, Virani A, Cheema T. COVID-19: An Update on the Epidemiological, Clinical, Preventive, and Therapeutic Management of 2019 Novel Coronavirus Disease. Crit Care Nurs Q. 2021; 44(1):128–37.doi: 10.1097/CNQ.0000000000000346
5. Salud confirma el primer caso de coronavirus en el país. Argentina.gob.ar. 2020. https://www.argentina.gob.ar/noticias/salud-confirma-el-primer-caso-de-coronavirus-en-elpais
6. Plan estratégico para la vacunación contra la Covid-19 en la República Argentina.
Resolución 2883/2020. Argentina: Ministerio de Salud de la Nación. 2020.
7. Rovere P, Laurelli A, Díaz A, Dabusti G, Valdez P. Seroprevalencia de anticuerpos anti s1 sars-cov-2 en trabajadores vacunados con Sputnik v en un hospital público de la ciudad de Buenos Aires. Medicina (B. Aires). 2021; 81(6):895–901.
8. Prado A, Salas Cris C, Lopez de Armentia, Vélez A L. Evaluación de la respuesta humoral frente a la vacunación Covid-19 del personal de salud del Hospital Sbarra. Sbarra Científica.2021;3(4). http://www.hospitalsbarra.com.ar/cientifica/index.html
9. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397:671–81. doi.org/10.1016/S0140-6736(21)00234-8
10. Ochani R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021; 29(1):20–36. https://www.ncbi.nlm.nih.gov/pubmed/33664170
11. Llaveta GA, Arandia-Guzmán J. SARS-CoV-2: estructura, replicación y mecanismos fisiopatológicos relacionados con COVID-19.Gaceta Medica Boliviana. 2020; 43: 172–8.doi.org/10.47993/gmb.v43i2.85
12. Vera Carrasco O. Síndrome de distrés respiratorio agudo y Covid-19. Rev Méd La Paz. 2021;27(1):60–9.http://www.scielo.org.bo/scielo.php?script=sci_abstract&pid=S1726-8958 2021000100010&lng=es&nrm=iso&tlng=es
13. COVID-19, una emergencia de salud pública mundial. Rev Ordem Med. 2021; 221:
(1):55–61.doi.org/10.1016/j.rce.2020.03.001
14. Gutierrez Choque BJ, Aruquipa Quispe CJ. COVID-19: Aspectos virológicos y patogénesis. Rev Cient Cienc Méd. 2020; 23(1):77–86. http://www.scielo.org.bo/scielo.php?script=sci_abstract&pid=S1817-74332020000100011 &lng=es&nrm=iso&tlng=es
15. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi.org/10.1007/978-1-4939-2438-7_1
16. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 10:
725:138277. doi.org/10.1016/j.scitotenv.2020.138277
17. Sánchez-Ramón S, Butnaru D. Modelos de reconocimiento inmunológico: tolerancia e inmunidad en el marco de la evolución del conocimiento científico.Inmunología. 2013; 32; 139–47.doi.org/10.1016/j.inmuno.2013.09.001
18. Pastrian-Soto G. Bases Genéticas y Moleculares del COVID-19 (SARS-CoV-2). Mecanismos de Patogénesis y de Respuesta Inmune.Int. J. Odontostomat. 2020; 14 (3): 331–7. doi.org/10.4067/s0718-381x2020000300331
19. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92: 424–32. doi.org/10.1002/jmv.25685
20. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38(1):1–9. doi.org/10.12932/AP-200220-0772
21. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Med Res. 2020; 7: 11. doi.org/10.1186/s40779-020-00240-0
22. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020;
30(3):e2107. doi.org/10.1002/rmv.2107
23. Marco JJG, Martínez AM, Bermejo LF. Inmunización para la COVID-19. Diferencias en la tecnología de producción, eficacia y seguridad. FMC - Formación Médica Continuada en Atención Primaria. 2021; 28: 330–9. doi.org/10.1016/j.fmc.2021.06.001
24. Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021;397(10275):642–3.doi.org/10.1016/S0140-6736(21)00191-4
25. Ley de vacunas destinadas a generar inmunidad adquirida contra el Covid-19. Ley
27573/2020; 4. Disponible en:
http://servicios.infoleg.gob.ar/infolegInternet/verNorma.do?id=343958
26. Ley de Seguridad Social y Reactivación Productiva en el marco de la Emergencia Pública. Ley 27541. Sect. Titulo X: Decreto de Necesidad y Urgencia 260/2020.
http://servicios.infoleg.gob.ar/infolegInternet/anexos/330000-334999/333564/texact.htm
27. Miguel-Hernández ÁS, Ramos-Sánchez MC. Historia de las vacunas y sueroterapia.
Gaceta Médica de Bilbao (Revista Electrónica). 2013 (consultado 8 de diciembre 2022)
Disponible en:
http://www.gacetamedicabilbao.eus/index.php/gacetamedicabilbao/article/view/107
28. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect Dis. 2022;
22(2):196–208. doi.org/10.1016/S1473-3099(21)00462-X
29. Soto A, Charca-Rodríguez F de M, Pareja-Medina M, Fernandez-Navarro M,
Altamirano-Cáceres K, Sierra Chávez E, et al. Evaluation of the humoral response induced by BBIBP-CorV vaccine by determining neutralizing antibodies in peruvian healthcare personnel. Rev Peru Med Exp Salud Publica. 2021;38(4):493–500. doi.org/10.17843/rpmesp.2021.384.9244
30. Ridao FE, Molina LB, del Valle Caviglia AL, Berniè AG, Cayo CGR, Moreno GR, et al. Estudio clínico de evaluación humoral con el empleo de la vacuna Sputnik en La Rioja: informe parcial.Centro de Investigación en Medicina Traslacional (CIMT) - Ministerio de Salud Pública de La Rioja
31. Knoll MD, Wonodi C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet. 2021; 397:72–4.doi.org/10.1016/s0140-6736(20)32623-4
32. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature.
2020;588(7837):315–20. doi.org/10.1038/s41586-020-2700-3
Cordova E, Ines Lespada M, Cecchini D, Nieto F, Palonski S, Badran M, et al. Evaluación de la respuesta de los anticuerpos IGG específicos contra SARS-CoV-2 en el personal de salud con el esquema completo de la vacuna Sputnik V (Gam-COVID-Vac) Vacunas. 2022; 23:14–21. doi.org/10.1016/j.vacun.2022.01.008
Published
Issue
Section
License
Copyright (c) 2024 Yasmin Gonzalez , Darío Marinozzi , Mariano Luis Soria (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.