Impact of Altitude on Cardiovascular Physiology: Literature Review and Update

Authors

DOI:

https://doi.org/10.56294/hl2024.251

Keywords:

Altitude, Cardiovascular system, Chronic mountain sickness, Pulmonary hypertension

Abstract

Introduction:  More than 140 million people in the world live at high altitudes, above 2,500 meters (m) above sea level. Oxygen is vital for cellular metabolism; therefore, hypoxic conditions found at high altitude affect all physiological functions. Metods: A search for information was carried out in the SciELO, Scopus, PubMed/MedLine databases, the Google Scholar search engine, as well as in the ClinicalKeys services. Advanced search strategies were used to retrieve the information, by structuring search formulas using the terms "Cardiovascular Physiology", "Cardiovascular Physiology at Altitude", as well as their translations into Spanish " Fisiología Cardiovascular " and " Fisiología Cardiovascular en la altitud ". Results discussion: The heart is composed of three main types of cardiac muscle: atrial muscle, ventricular muscle, and specialized excitatory and conductive muscle fibers. The efficiency and work of the heart as a pump is often measured in terms of cardiac output, or the amount of blood the heart pumps per minute. Cardiac output is the product of stroke volume and heart rate Cardiovascular Changes at Altitude It is possible to think of the goal of acclimatization as maintaining oxygen delivery to the tissues as close to normal as possible. The cardiovascular system is central to this. Acute exposure to high altitude produces an increase in heart rate and cardiac output both at rest and for a given amount of work compared with sea level. In general, the normal heart tolerates even severe hypoxia very well. The heart, as a hemodynamic pump, has two mechanisms at its disposal to enhance its performance: heart rate and stroke volume, which together constitute cardiac output. The altitude electrocardiogram shows a variably increased amplitude of the P wave, deviation of the QRS axis to the right, and signs of right ventricular overload and hypertrophy. Conclusions: Advances in high-altitude research have shown that the cardiovascular system deploys some efficient mechanisms of acclimatization to oxygen deprivation, and the healthy heart adapts to hypoxia, even when severe, with preservation of systolic function and only minor impairment of LV and RV diastolic function. With acclimatization, desensitization of the adrenergic system, together with increased parasympathetic influence, leads to a decrease in maximum heart rate and protection of the myocardium against potentially damaging energy imbalances. Acute exposure to high altitude stimulates the adrenergic system, increasing heart rate and cardiac output; although arterial pressure remains stable, pulmonary artery pressure increases due to hypoxic pulmonary vasoconstriction. Our improved understanding of the effect of altitude hypoxia on the cardiovascular system will allow better-informed, evidence-based advice for patients with pre-existing cardiovascular disease

References

1. Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998;Suppl 27:25-64. Available from: https://doi.org/10.1002/(sici)1096-8644(1998)107:27+%3C25::aid-ajpa3%3E3.0.co;2-l

2. Zubieta-Calleja G, Zubieta-DeUrioste N. High Altitude Pulmonary Edema, High Altitude Cerebral Edema, and Acute Mountain Sickness: an enhanced opinion from the High Andes – La Paz, Bolivia 3,500 m. Reviews on Environmental Health. 2023;38(2): 327-338. https://doi.org/10.1515/reveh-2021-0172.

3. West J B. High Life, A history of high-altitude physiology and medicine. Oxford University Press, Oxford, 1998.

4. West JB, Boyer SJ, Graber DJ, et al. Maximal exercise at extreme altitudes on Mount Everest Exerc. J Appl Physiol Respir Environ. 1983;55:688---98.

5. West JB, Hackett PH, Maret KH, Milledge JS, Peters RM Jr, Pizzo CJ, et al. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol. 1983;55:678---87.

6. Berger MM, Grocott MP. Facing acute hipoxia: From the mountains to critical care medicine. Br J Anaesth. 2017;118:283-6. http://dx.doi.org/10.1093/bja/aew407.

7. Lundberg JO, Weitzberg E. NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol. 2005;25:915–922.

8. Hall JE, Guyton AC, Hall ME. Tratado de fisiología médica. 14ª ed. Elsevier; 2021.

9. Porth. Fisiopatología Ed.10. Alteraciones de la salud. Conceptos básicos.10 Edición; 2019.

10. Davis PR, Pattinson KT, Mason NP, Richards P, Hillebrandt D. High altitude illness. J R Army Med Corps. 2011 Mar;157(1):12-7. https://doi.org/10.1136/jramc-157-01-03

11. Peter Bärtsch. Circulation. Effect of Altitude on the Heart and the Lungs, Volume: 116, Issue: 19, Pages: 2191-2202. https://doi.org/10.1161/CIRCULATIONAHA.106.650796

12. Koller EA, Drechsel S, Hess T, et al. Effects of atropine and propanolol on the respiratory, circulatory, and ECG responses to high altitude in man. Eur J Appl Physiol. 1988;57:163–172.

13. Reeves JT, Groves BM, Sutton JR, et al. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol. 1987;63:531–539. https://doi.org/10.1152/jappl.1987.63.2.531

14. Boushel R, Calbet J-AL, Rådegran G, et al. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation. 2001;104:1785–1791.

15. Luft UC. Acclimatization to Altitude, Ulrich C. Luft. Albuquerque, NM: F.C. Luft and Lovelace Medical Foundation, 1993.

16. West JB, Boyer SJ, Graber DJ, et al. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol. 1983;55: 688-698. https://doi.org/10.1152/jappl.1983.55.3.688

17. Richalet, J, Hermand, E. Modeling the oxygen transport to the myocardium at maximal exercise at high altitude. Physiol. Rep. 2022;10, e15262. https://doi.org/10.14814/phy2.15262

18. Grollman A. Physiological variations of the cardiac output of man. VII The effect of high altitude on the cardiac output and its related functions: an account of experiments conducted on the summit of Pikes Peak, Colorado. Am J Physiol.1930; 93:19-40. https://doi.org/10.1152/ajplegacy.1930.93.1.19

19. Pugh LG. Cardiac output in muscular exercise at 5,800 m (19,000 ft). J Appl Physiol. 1964;19: 441-447.

20. Groves BM, Reeves JT, Sutton JR, et al. Operation Everest II: Elevated high altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol.1987;63: 521-530.

21. Heistad DD, Abboud FM. Circulatory adjustments to hypoxia. Circulation. 1980;61:463–470.

22. Bender PR, Groves BM, McCullough RE. Oxygen transport to exercising leg in chronic hypoxia. J Appl Physiol. 1988; 65:2592–2597.

23. Wolfel EE, Selland MA, Cymerman A, et al. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m. J Appl Physiol. 1998;85:1092–1102.

24. Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol. 2004;97:149–159.

25. Pace, N., Consolazio, W. V. & Lozner, E. L. The effect of transfusions of red blood cells on the hypoxia tolerance of normal men. Science.1945;102, 589–591.

26. Wiggers, C. J. Cardiac adaptations in acute progressive anoxia. Ann. Intern. Med. 1941;14, 1237–1247.

27. Richalet, J.-P. The invention of hypoxia. J. Appl. Physiol. 2021;130, 1573–1582.

28. Jean-Paul Richalet, Eric Hermand, François Lhuissier. Cardiovascular physiology and pathophysiology at high altitude. Nature Reviews Cardiology, 2023. https://doi.org/10.1038/s41569-023-00924-9

29. Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology.2009; 24, 97– 594 106. https://doi.org/10.1152/physiol.00045.2008

30. Richalet, J.-P. In Hypoxia: Translation in Progress (eds Roach, R. C., Hackett, P. H. & Wagner, P. 608 D.) 2016; Ch. 23, 343–356.

31. Escourrou, P., Johnson, D. G. & Rowell, L. B. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J. Appl. Physiol. 1984;57, 1507–1511.

32. Calbet, J. A. L. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy 612 humans. J. Physiol. 2023;551, 379–386.

33. Hansen, J. & Sander, M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J. Physiol. 2003; 546, 921–929. https://doi.org/10.1113/jphysiol.2002.031765

34. Reeves, J. T. et al. Operation Everest II: preservation of cardiac function at extreme altitude. J. Appl. Physiol.1987; 63, 531–539.

35. Grover, R. F., Weil, J. V. & Reeves, J. T. Cardiovascular adaptation to exercise at high altitude. Exerc. Sport Sci. Rev. 1986; 14, 269–302.

36. Fukuda, T. et al. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise. Int. Heart J. 2010; 51, 170–175.

37. Boussuges, A. et al. Operation Everest III (Comex ’97): modifications of cardiac function secondary to altitude-induced hypoxia: an echocardiographic and Doppler study. Am. J. Respir. Crit. Care Med. 2000; 161, 264–270.

38. Ghofrani, H. A. et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest Base Camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med. 2004. 141, 169.

39. Coustet, B., Lhuissier, F. J., Vincent, et al. Electrocardiographic changes during exercise in acute hypoxia and susceptibility to severe high-altitude illnesses. Circulation 131, 786– 679.

40. Liu Y, Zhang JH, Gao XB, et al. Correlation between blood pressure changes and AMS, sleeping quality and exercise upon high-altitude exposure in young Chinese men. Mil Med Res. 2014;1:19. DOI: 10.1186/2054-9369-1-19.

41. Rhodes HL, Chesterman K, Chan CW, et al. Systemic blood pressure, arterial stiffness and pulse waveform analysis at altitude. JR Army Med Corps 2011;157:110–113.

42. D’Este D, Mantovan R, Martino A, et al.The behavior of the arterial pressure at rest and under exertion in normotensive and hypertensive subjects exposed to acute hypoxia at a median altitude. G Ital Cardiol. 1991;21:643–649.

43. Hainsworth, R., Drinkhill, M. J. & Rivera-Chira, M. The autonomic nervous system at high altitude. Clin. Auton. Res. 2007; 17, 13–19. https://doi.org/10.1007/s10286-006-0395-7

44. Auza-Santivañez JC, Vitón-Castillo AA, Luperón Loforte D, Viruez-Soto JA. Ecocardiografía una herramienta valiosa en la formación del especialista en Medicina Intensiva y Emergencias. Rev. cuba. cardiol. cir. cardiovasc. [Internet]. 2021 [citado 14 Ene 2025]; 27 (2) . Disponible en: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/1138

45. Ke J, Wang L, Xiao D. Adaptación cardiovascular a la hipoxia a gran altitud [Internet]. Hipoxia y enfermedades humanas. InTech; 2017. Disponible en: http://dx.doi.org/10.5772/65354.

46. Lahiri S, Mulligan E, Nishino T, et al. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J Appl Physiol Respir Environ Exerc Physiol.1981;50:580–586.

47. Niewinski P, Janczak D, Rucinski A, et al. Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Exp Physiol. 2014;99:552–561. DOI: 10.1113/expphysiol.2013.075580.

48. Kato H, Menon AS, Slutsky AS. Mechanisms mediating the heart rate response to hypoxemia. Circulation. 1988;77:407–414.

49. Hanada A, Sander M, Gonzalez-Alonso J. Human skeletal muscle sympathetic nerve activity, heart rate and limb haemodynamics with reduced blood oxygenation and exercise. J Physiol 2003;551:635–647. DOI: 10.1113/jphysiol.2003.044024.

50. Halliwill JR, Morgan BJ, Charkoudian N. Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans. J Physiol. 2003;552:295–302. DOI: 10.1113/jphysiol.2003.050708.

51. Suarez J, Alexander JK, Houston CS. Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol.1987;60:137–142.

52. Boussuges A, Molenat F, Burnet H, et al. Operation Everest III (Comex '97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med 2000;161:264–270. DOI: 10.1164/ajrccm.161.1.9902096.

53. Mortimer Jr EA, Monson RR, McMahon B. Reduction in mortality from coronary heart disease in men residing at high altitude. N Engl J Med 1977;296:581–585.

54. Turek, Z, Kubat K, Ringnalda BEM. Experimental myocardial infarction in rats acclimated to simulated high altitude. Basic Res Cardiol 1980;75:544–553

55. Neckar J, Szarszoi O, Koten L, et al. Effects of mitochondrial KATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res 2002:55:567–575.

56. Tajima M, Katayose D, Bessho M, et al. Acute ischaemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischaemia. Cardiovasc Res 1994:28:312–319.

57. La Padula P, Costa LE. Effect of sustained hypobaric hypoxia during maturation and aging on rat myocardium. I. Mechanical activity. J Appl Physiol 2005;98(6):2363–2369. DOI: 10.1152/japplphysiol.00988.2004.

58. Kolar F, Ostadal B. Right ventricular function in rats with hypoxic pulmonary hypertension. Pflugers Arch.1991;419:121–126.

59. Ostadal B, Kolar F. Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol. 2007;158:224–236. https://doi.org/10.1016/j.resp.2007.03.005

60. Ostadal B, Mirejovska E, Hurych J, et al. Effect of intermittent high altitude hypoxia on the synthesis of collagenous and non-collagenous proteins of the right and left ventricular myocardium. Cardiovasc Res.1978;12:303–308. https://doi.org/10.1093/cvr/12.5.303.

Published

2025-01-15

How to Cite

1.
Auza-Santivañez JC, Quisbert Vasquez HT, Bautista-Vanegas FE, Espejo-Alanoca D, Chiri-Chambi P, Mamani Huarachi VH, et al. Impact of Altitude on Cardiovascular Physiology: Literature Review and Update. Health Leadership and Quality of Life [Internet]. 2025 Jan. 15 [cited 2025 Aug. 24];3:.251. Available from: https://hl.ageditor.ar/index.php/hl/article/view/251