Analysis and prediction of different stages of brain tumor from mri using ai models
DOI:
https://doi.org/10.56294/hl2024.188Keywords:
Brain tumor, classification, segmentation, deep learning, machine learningAbstract
Medical imaging uses computer techniques to create images of the human body's inside for diagnostic purposes. Image segmentation is crucial for many medical assessments, navigation, surgical planning, and diagnosis. There are now three techniques available for segmenting the region of interest: manual, semi-automated, and automatic. In this paper, a hybrid way to deal with the identification and characterization of brain cancers utilizing attractive reverberation imaging is proposed. It is very challenging to analyze brain cancers due to the varieties in growth position, structure, and size. The fundamental target of this study is to provide specialists with an exhaustive assortment of writing on the use of attractive reverberation imaging (MR) to the identification of cerebrum diseases. This study proposed a number of techniques for the statistical image processing and artificial intelligence-based tumour and brain cancer diagnosis. This concentrate likewise incorporates an evaluation grid for a particular framework utilizing explicit frameworks and dataset types. At last, our review gathers every one of the information expected to analyze and figure out malignant growths, including their advantages, disadvantages, headways, and possible future patterns.
References
1. Machiraju Jaya Lakshmi & S.Nagaraja Rao., “Brain tumor magnetic resonance image classification: a deep learning approach,” Soft Computing, vol. 26, pp.6245–6253, 2022, doi:https://doi:org/10.1007/s00500-022- 07163-z.
2. Wen Jun & Zheng Liyuan, “Brain Tumor Classification Based on Attention Guided Deep Learning Model,” International Journal of Computational Intelligence Systems, vol.15, pp. 35, 2022, doi: https://doi:org/10.1007/s44196-022-00090-9.
3. Arshia Rehman et.al., “A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning.” Circuits Systems and Signal Processing, vol. 39, pp. 757–775, 2020, doi: https://doi:org/10.1007/s00034-019-01246-3.
4. Fernando, T. et.al., “Deep Learning for Medical Anomaly Detection – A Survey,” ACM Computing Surveys, vol. 54, issue (7), pp. 1-37, 2021, doi: https://doi:org/10.1145/3464423.
5. Alexander Selvikvåg Lundervold & Arvid Lundervold, “An overview of deep learning in medical imaging focusing on MRI,” Zeitschrift für Medizinische Physik, vol. 29, issue (2), 2019, pp. 102-127, doi: https://doi:10.1016/j.zemedi.2018.11.002.
6. Rundo, L. et al., “Semi-automatic Brain Lesion Segmentation in Gamma Knife Treatments Using an Unsupervised Fuzzy C-Means Clustering Technique,” Smart Innovation, Systems and Technologies, vol 54. Springer, Cham. 2016, doi: https://doi:org/10.1007/978-3-319-33747-0_2.
7. Stijn Bonte et al., “Machine learning based brain tumour segmentation on limited data using local texture and abnormality,” Comput Biol Med, vol. 98, pp. 39-47, 2018, doi: https://doi:10.1016/j.compbiomed.2018.05.005
8. Mohsen, Heba, et al. Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal, Vol 3, pp 68-71, 2018. DOI: 10.1016/j.fcij.2017.12.001.
9. Sobhaninia, Zahra, et al. Brain Tumor Segmentation Using Deep Learning by Type Specific Sorting of Images. arXiv preprint arXiv:1809.07786 (2018).
10. Widhiarso, Wijang, Yohannes Yohannes, and Cendy Prakarsah. Brain Tumor Classification Using Gray Level Co-occurrence Matrix and Convolutional Neural Network. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), Vol 8, pp 179-190, 2018. DOI: 10.22146/ijeis.34713.
11. Chandra, Saroj Kumar, and Manish Kumar Bajpai. Effective algorithm for benign brain tumor detection using fractional calculus. TENCON 2018-2018 IEEE Region 10 Conference. IEEE, 2018. DOI: 10.1109/TENCON.2018.8650163.
12. Seetha, J., and S. S. Raja. Brain Tumor Classification Using Convolutional Neural Networks. Biomedical & Pharmacology Journal, Vol 11, pp 1457-1461, 2018. DOI: 10.1007/978-981-10-9035-6_33.
13. Cheng, Jun, et al. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one, Vol 10, 2015. DOI: 10.1371/ journal.pone.0140381.
14. Sajna, V., & Dharmaraj, A. (2024). Awareness of Central Sector Scheme among the Entrepreneurs in MSME Sector: An Investigative Study. Indian Journal of Information Sources and Services, 14(3), 115–122. https://doi.org/10.51983/ijiss-2024.14.3.16
15. Babenko, V., Danilov, A., Vasenin, D., & Krysanov, V. (2021). Parametric Optimization of the Structure of Controlled High-voltage Capacitor Batteries. Archives for Technical Sciences, 1(24), 9–16. https://doi.org/10.7251/afts.2021.1324.009B
16. Turan, F., & Ergenler, A. (2021). DNA Damage in Hybrid Tilapia (Oreochromis niloticus x O. aureus) Exposed to Short-Transport Process. Natural and Engineering Sciences, 6(3), 190-196. http://doi.org/10.28978/nesciences.1036849
17. Faisal, T., & Dharmaraj, A. (2024). Perception of E-learning among the Students Studying in Higher Education Institutions with Reference to Kerala. Indian Journal of Information Sources and Services, 14(4), 66–72. https://doi.org/10.51983/ijiss-2024.14.4.11
18. Cvijić, R., & Milošević, A. (2020). Reproduction of the Mineral – Raw Material Base problems in the Republic Srpska. Archives for Technical Sciences, 2(23), 1–8.
19. Min, S., & Atan, N. A. (2024). Students’ Performance and Perceptions of Authentic E-Learning Activities in English Intercultural Learning. Indian Journal of Information Sources and Services, 14(4), 92–102. https://doi.org/10.51983/ijiss-2024.14.4.15
20. Aydın, M., & Karadurmuş, U. (2021). The new maximum length of the Solea solea (Linnaeus, 1758) in the Turkish Coast of Black Sea. Natural and Engineering Sciences, 6(3), 261-264. http://doi.org/10.28978/nesciences.1036856
21. Danková, Z., Štyriaková, I., Kovaničová, Ľ., Čechovská, K., Košuth, M., Šuba, J., Nováková, J., Konečný, P., Tuček, Ľ., Žecová, K., Lenhardtová, E., & Németh, Z. (2021). Chemical Leaching of Contaminated Soil – Case Study. Archives for Technical Sciences, 1(24), 65–72.
22. Agina-Obu, R., & Oyinkepreye Evelyn, S.-G. (2023). Evaluation of Users’ Satisfaction of Information Resources in University Libraries in Nigeria: A Case Study. Indian Journal of Information Sources and Services, 13(1), 1–5. https://doi.org/10.51983/ijiss-2023.13.1.3378
23. Lukić, M. (2019). An Analysis of the Influence of Air Temperature and Humidity on Outdoor Thermal Comfort in Belgrade (Serbia) Using A Simple Heat Index. Archives for Technical Sciences, 2(21), 75–84.
24. Eiriemiokhale, K., & James, J. B. (2023). Application of the Internet of Things for Quality Service Delivery in Nigerian University Libraries. Indian Journal of Information Sources and Services, 13(1), 17–25. https://doi.org/10.51983/ijiss-2023.13.1.3463
25. Đurić, N., & Đurić, D. (2019). Landslides on the Roads of the Northern Part of the Republic of Srpska as a Result of Elemental or Anthropogenic Processes. Archives for Technical Sciences, 2(21), 11–24.
26. Salokhiddinov, A., et al. (2020). Impact of climate change on irrigated agriculture in steppe zones of Uzbekistan. IOP Conference Series: Materials Science and Engineering, 883, 012073. https://doi.org/10.1088/1757-899X/883/1/012073
27. Karimov, B. K., et al. (2020). Relationship between the concentrations of nitrogen compounds and the water discharge in the Chirchiq River, Uzbekistan. IOP Conference Series: Earth and Environmental Science, 614, 012154. https://doi.org/10.1088/1755-1315/614/1/012154
28. Karimov, N., et al. (2024). Exploring food processing in natural science education: Practical applications and pedagogical techniques. Natural and Engineering Sciences, 9(2), 359-375. https://doi.org/10.28978/nesciences.1574453.
Published
Issue
Section
License
Copyright (c) 2024 Rustam Navruzov, Jasur Ismoilov, Mukhammadshokir Bahadirkhanov, Umida Almatova, Jamolbek Djuraev, Alisher Mikhiddinov, Nadira Mirametova (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.