Artificial Intelligence and Psychology: a study of scientific production in Scopus
DOI:
https://doi.org/10.56294/hl2023187Keywords:
Bibliometrics, Psychology, Artificial IntelligenceAbstract
Introduction: Artificial intelligence (AI) has become an increasingly used tool in the practice of psychology. It can help psychologists analyze large amounts of data and identify patterns that may be difficult for humans to detect. In addition, it has been used to develop predictive models that can help psychologists predict human behavior and make informed decisions. Objective: To describe the scientific production about AI in the practice of psychology from publications indexed in Scopus between 2003 and 2023. Methods: A bibliometric study of the scientific production indexed in Scopus on AI in psychology was conducted. This study covered a population of 562 articles published between 2003 and 2023. An analysis of scientific productivity indicators was carried out: annual publications, Lotka distribution, productivity index, country and publication mode. Results: The results of the study reveal an exponential growth in scientific production on AI in psychology from 2003 to 2023, with some periodic fluctuations. Four stages of literature growth were identified: precursors, exponential growth, linear growth and collapse of the scientific field for the volume of publications analyzed. The Lotka distribution indicates that there are many authors who publish few articles and few authors who publish many articles, with a Lotka productivity index of 6.76, indicating a moderate concentration of author productivity and greater author participation. As for the country of origin of scientific production, the leading countries in this field are the United States, United Kingdom, China, Germany and Italy. Conclusions: The scientific production of AI in psychology was described, and the findings provide an up-to-date and detailed view of the intersection between AI and psychology, and lay the groundwork for future research and applications in this field. Monitoring scientific productivity in this area allows fostering the development of disruptive technologies for public good
References
1. Roll, I., & Wylie, R. (2016). Evolución y revolución en la inteligencia artificial en educación. International Journal of Artificial Intelligence in Education, 26(2), 582-599. https://doi.org/10.1007/s40593-016-0110-3
2. Altamirano-Yupanqui, J. R., & Bernuy-Alva, A. (2022). La inteligencia artificial en la Psicología: nuevos enfoques para la detección de las declaraciones falsas. RISTI, (46).
3. Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Explorando oportunidades y desafíos de la Inteligencia Artificial y el Aprendizaje Automático en Instituciones de Educación Superior. Sustainability, 13, 10424. https://doi.org/10.3390/su131810424
4. Jiao, P., Ouyang, F., Zhang, Q., & Alavi, A. H. (2022). Modelo de predicción habilitado por inteligencia artificial del rendimiento académico de los estudiantes en la educación de ingeniería en línea. Artificial Intelligence Review, 55, 6321-6344. https://doi.org/10.1007/s10462-022-10155-y
5. Ridley, M. (2022). Inteligencia Artificial Explicable (XAI). Information Technology and Libraries, 41(2). https://doi.org/10.6017/ital.v41i2.14683
6. Sebio Martin, M. (2020). Inteligencia artificial y ética.
7. Taylor, J. E., & Taylor, G. W. (2020). Cognición artificial: Cómo la psicología experimental puede ayudar a generar inteligencia artificial explicable. Psychonomic Bulletin & Review, 28, 454-475. https://doi.org/10.3758/s13423-020-01825-5
8. Pradhan, R., Lahiri, A., Galhotra, S., & Salimi, B. (12 de junio de 2022). IA explicable: fundamentos, aplicaciones, oportunidades para la investigación en gestión de datos. Sigmod. https://doi.org/10.1145/3514221.3522564
9. Almaraz Rodríguez, O. D. (2024). Inteligencia artificial y docentes: Un estudio bibliométrico. Transdigital, 5(9), e279. https://doi.org/10.56162/transdigital279
10. Quevedo-Blasco, R., Ruiz-Herrera, N., & Guillén-Riquelme, A. (2021). Análisis bibliométrico de revistas españolas de psicología indexadas en el Emerging Source Citation Index (2018-2020). Papeles del Psicólogo, 42(3), 170-176. Epub 06 de junio de 2022. https://dx.doi.org/10.23923/pap.psicol.2968
11. Tortosa-Pérez, M.; González-Sala, F.; Osca Lluc, J.; Lloret-Sirerol, C.; & Alfaro-Ferreres, E. (2021). Análisis Bibliométrico de la Revista Anuario de Psicología Jurídica entre 1991-2019. Anuario de Psicología Jurídica, 31, 137-145. Colegio Oficial de la Psicología de Madrid. https://doi.org/10.5093/apj2021a6
12. De Filippo, D. y Gorraiz, J. (2020). ¿Es el Emerging Source Citation Index una ayuda para evaluar el impacto de las citas en ciencias sociales y humanidades? Journal of Informetrics, 14(4), 101088. https://doi.org/10.1016/j.joi.2020.101088
13. Salazar Garcés, L. F., & Velastegui Hernandez, D. C. (2024). Inteligencia Artificial y su Impacto en la Psicología Humana: Mini Revisión. Mediciencias UTA, 8(1), 26–34. https://doi.org/10.31243/mdc.uta.v8i1.2306.2024
14. Ibarra-Pincay, M., & Alcívar-Cevallos, R. (2024). Tendencias de la Inteligencia Artificial Explicable en el Área de Psicología. Revista Científica INGENIAR: Ingeniería, Tecnología E Investigación; 7(13), 80-101. https://doi.org/10.46296/ig.v7i13.0154
15. Sánchez Osorio, I. A. (2023). Inteligencia Artificial en la Educación Superior: Un Análisis Bibliométrico. Revista Educación Superior Y Sociedad (ESS), 35(2), 156-173. https://doi.org/10.54674/ess.v35i2.820
Published
Issue
Section
License
Copyright (c) 2023 Carlos Rafael Araujo Inastrilla , Mayelin Llosa Santana , Dalila Cárdenas Hernández , Dayami Gutiérrez Vera (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.