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ABSTRACT

The rise of remote work has highlighted the need for tools and technologies that can enhance employee 
productivity outside of the traditional office setting. Artificial intelligence (AI) and Machine Learning (ML) 
have demonstrated potential for optimizing remote work environments by automating tasks, controlling 
workflows, and offering insights into worker performance. Though, the unpredictability of remote work 
conditions across different industries and geographic regions pose some challenges affecting the applicability 
of the result. This research aims to examine the impact of AI and ML on remote workers’ productivity.  
It seeks to assess how these technologies can improve productivity by examining employee behavior and 
performance patterns. A novel method called Refined Random Natural Gradient Boosting (RR-NGboost) 
technique is implemented, to develop predictive models for analyzing productivity changes. These 
methods are trained to recognize patterns in workplace behavior and forecast productivity trends. Data 
is gathered from remote workers in various places (city, town, and village), covering factors like work 
hours, task completion rates, and time management. The data is cleaned (by removing inconsistencies 
and missing values) and Z-score normalization is used to scale the data and develop model performance. 
Principal Component Analysis (PCA) is used to minimize dimensionality and highlight the most important 
traits. According to the results, the proposed RR-NGboost method is quite accurate in predicting production 
fluctuations, achieving a Mean Squared Error (MSE) of 0,3958 and a Mean Absolute Error (MAE) of 0,4234, 
demonstrating its strong predictive capability and minimal deviation from actual productivity scores. RR-
NGboost is the best in terms of feature importance and prediction reliability. The research indicates that 
AI and ML approaches can significantly improve remote worker productivity by giving real-time insights and 
automating time management operations, which benefits workers as well as managers.

Keywords: Employee Productivity; Remote Work; Employee Behavior; Productivity; Refined Random Natural 
Gradient Boosting (RR-Ngboost).

RESUMEN

El aumento del trabajo a distancia ha puesto de relieve la necesidad de herramientas y tecnologías que 
pueden mejorar la productividad de los empleados fuera del entorno de oficina tradicional. La inteligencia 
Artificial (ia) y el aprendizaje automático (ML) han demostrado el potencial para la optimización de entornos 
de trabajo remotos mediante la automatización de tareas, el control de los flujos de trabajo y la oferta de 
conocimientos sobre el rendimiento de los trabajadores. Sin embargo, la imprevisibilidad de las condiciones 
de trabajo remoto en diferentes industrias y regiones geográficas plantean algunos desafíos que afectan a 
la aplicabilidad del resultado. Esta investigación tiene como objetivo examinar el impacto de IA y ML en la 
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productividad de los trabajadores remotos. Se trata de evaluar cómo estas tecnologías pueden mejorar la 
productividad mediante el examen del comportamiento de los empleados y los patrones de rendimiento. Se 
implementa un nuevo método llamado refinrandom Natural Gradient boost (RR-NGboost), para desarrollar 
modelos predicpara analizar los cambios en la productividad. Estos métodos están entrenados para reconocer 
patrones en el comportamiento del lugar de trabajo y predecir tendencias de productividad. Los datos se 
recopila partir de los trabajadores remotos en varios lugares (ciudad, pueblo y aldea), que abarca factores 
como las horas de trabajo, las tasas de finalización de tareas, y la gestión del tiempo. Los datos se limpian 
(eliminando inconsisty valores que faltan) y la normalización de Z-score se utiliza para escalar los datos y 
desarrollar el rendimiento del modelo. El análisis de componentes principales (PCA) se utiliza para minimizar 
la dimensionalidad y resaltar los rasgos más importantes. De acuerdo con los resultados, el método RR-
NGboost propuesto es bastante preciso en la predicción de las fluctuaciones de la producción, logrando un 
Error cuadrático medio (MSE) de 0,3958 y un Error absoluto medio (MAE) de 0,4234, lo que demuestra su 
fuerte capacidad predictiva y una desviación mínima de las puntude productividad real. RR-NGboost es el 
mejor en términos de importancia de la función y la fiabilidad de predicción. La investigación indica que 
los enfoques AI y ML pueden mejorar significativamente la productividad de los trabajadores remotos al dar 
información en tiempo real y automatilas operaciones de gestión del tiempo, lo que beneficia tanto a los 
trabajadores como a los gerentes.

Palabras clave: Productividad de los Empleados; Trabajo Remoto; Comportamiento de los Empleados; 
Productividad; Mejora Aleatoria Refindel Gradiente Natural (RR-Ngboost).

INTRODUCTION
Remote work, also known as telecommuting or Work-From-Home (WFH) has grown rapidly with advances 

in digital communication and cloud collaboration, becoming a mainstream especially after the COVID-19 
pandemic. It offers flexibility, reduces commute time, and allows companies to access a global talent pool. 
Productivity in remote work depends on factors like individual habits, task type, and digital infrastructure. 
Organizations increasingly use performance assessment and task management tools to monitor and improve 
productivity output.(1) Remote work is related to higher job satisfaction when autonomy and trust exist, 
but productivity gains vary by role and individual and are not guaranteed. Blurred work-life boundaries can 
positively or negatively affect productivity.(2) Hybrid work patterns and digital nomads are reshaping how 
productivity is viewed. Understanding these shifts is crucial for effective management and policy-making. 
Although, remote work presents some difficulties that the reduce productivity.(3) Lack of face-to-face interaction 
can cause misunderstandings and weaken team cohesion. Social isolation can show the way to burnout and 
disengagement. Several home environments lack ergonomic setups and calm surrounding space is needed for 
effective focus on work. Balancing work and household duties complicates time management. Employers face 
the difficulties of monitoring performance without micromanaging.(4) Cybersecurity risks rise with remote access 
to sensitive data. Access to reliable internet and technology varies by location and socioeconomic status. 
Maintaining motivation and engagement in dispersed teams is difficult, and asynchronous communication can 
hinder collaboration and decision-making.(5) These issues require advanced solutions to sustain productivity. 
Traditional productivity measures focus on task completion, time tracking, and check-ins. Tools like Slack, 
Asana, and Trello are common for communication and project management, with daily fundamental meetings 
to keep teams aligned.(6) However, these methods often prioritize movement over results, risking what is known 
as “Productivity Theater.” Excessive monitoring can damage trust and morale. Conventional evaluations often 
neglect cognitive load, emotional well-being, and creativity.(7) Static productivity models fail to adjust, to 
changing environments and diverse work styles. Prescriptive routines that are applied universally to all roles or 
cultures can lead to perceptions of micromanagement and decreased motivation. Therefore, there is a growing 
need for personalized, effect-focused, and human-centered approaches to administration remote productivity.(8)

To overcome the issues, this research was implemented to predict the productivity of remote workers using 
intelligent machine learning (ML) techniques. It aimed to evaluate how these technologies can predict and 
enhance productivity by analyzing behavioral and performance patterns. The proposed Refined Random Natural 
Gradient Boosting (RR-NGboost) method was used to create specific prediction models. The following are the 
key contributions of this study.

•	 Data was gathered from remote workers in cities, towns, and villages to capture various conditions.
•	 Preprocessing steps include missing values and Z-score normalization to standardize data. The 

Principal Component Analysis (PCA) was employed for feature extraction to identify the most relevant 
features from employee productivity data.

•	 A hybrid RR-NGboost method was employed to improve the accuracy of productivity prediction by 
combining Refined Ransom (RR) with Natural Gradient Boosting (NGboost).
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Twitter-based analysis(9) examined how public opinions and changing trends regarding remote work emerged 
following the COVID-19 epidemic. 63 % of tweets were positive, highlighting flexibility, work-life balance, and 
more opportunities in tech, management, and engineering. Results showed remote and hybrid models were 
more accepted, stressing teamwork and collaboration. The ML-based Productivity Prediction(10) aimed to analyze 
and predict WFH impact on productivity in Indian regions. It used ML algorithms to forecast changes, especially 
in urban areas. WFH improved productivity and reduced inactivity where digital access was strong. It noted 
both WFH benefits and issues like connectivity challenges. The research limited its generalizability due to 
specific geography and self-reported data. The Human Asian collaborative integration(11) examined how human-AI 
collaboration improved productivity, creativity, and innovation. Artificial Intelligence (AI) tools like generative 
AI, Natural Language Processing (NLP), and digital twins automated tasks, aiding strategic and interpersonal 
roles. Results showed more efficiency and role change with user-centric and learning systems. AI-human synergy 
benefits appeared in banking, healthcare, and creative fields. The research (12) used the AI-driven productivity 
evaluation outline to study AI effects in healthcare productivity. It examined AI’s influence through workers’ 
mental health, well-being, and information sharing. AI positively boosted productivity via those mediators. 
Technological leadership’s moderating role was found insignificant. Extreme Gradient Boosting (XGBoost)(13) was 
used to evaluate municipal employees’ productivity. It aimed to find the best ML model by comparing algorithms 
on municipal datasets. Limitation was exclusive ML focus, ignoring other productivity factors. The AI-Enabled 
Talent Management framework(14) examined how AI boosts global Human Resource (HR) operations. It evaluated 
AI’s influence with talent prediction, personalized learning, and automation. Results showed AI improved HR 
productivity but insisted ethical oversight. The report emphasized the need for HR to retain critical thinking and 
empathy. The research lacked with reduction in human interaction caused by excessive automation.

A hybrid AI based Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)(15) model was 
deployed, to evaluate risks in remote and hybrid work settings. It aimed to support Occupational Safety and Health 
(OSH) regulation compliance via hazard detection for workers. The model linked remote performance with injury 
risk and productivity. Limitation was lack of remote work incident data for better accuracy. The investigation 
on Industry 4.0 Technologies (I4.0)(16) studied their role in sustainable manufacturing. It found 20 applications 
that improved efficiency and eco-friendly production. Results showed I4.0 can build scalable, smart, and low-
resource environments. These technologies help make supply and delivery chains efficient. The work (17) aimed to 
predict the perceived productivity of office workers using a machine learning framework based on physiological, 
behavioral, and psychological features. It employed various ML models, with XGBoost identified as the most 
accurate. The extended model, which included psychological states, outperformed the baseline. Wearable devices 
provided more accurate predictions than workstation-based tools. However, the model’s effectiveness may be 
limited by variability in sensor accuracy and individual psychological differences. The investigation (18) analyzed 
past patterns and present data to evaluate AI’s effects on work-life balance, productivity, and employment. It 
examined previous technical developments and assessed both optimistic and pessimistic AI forecasts.  The findings 
demonstrated that, despite some short-term displacement, AI increased productivity and employment growth. 
A key drawback was uncertainty in long-term outcomes due to limited data. Research (19) investigated the need 
for developing an ML-based employee digital activity monitoring system. It aimed to assess the benefits of such 
systems in remote work settings. Analytic Hierarchy Process (AHP) was applied to responses from 102 superiors 
53 IT and 49 non-IT. The results showed that IT respondents prioritized job quality enhancement, while non-IT 
respondents emphasized increased employee productivity. A limitation of this research was its focus on a limited 
sample size, which could not fully represent the broader industry perspective.

METHOD

Figure 1. Framework for Predicting the Productivity of Remote Workers Using Refined Random NGboost
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The objective of this research was to analyse how AI and ML can predict and improve remote worker 
productivity. Data from diverse remote workers were collected and pre-processed by handling missing values 
and applying Z-score normalization. PCA was used for feature extraction, and the hybrid RR-NGboost method 
was employed for accurate productivity prediction. Figure 1 illustrates the overall methodology flow for 
boosting prediction of productivity of remote workers.

Date Collection
The Remote Worker Productivity Dataset is gathered from an open source platform called Kaggle (https://

www.kaggle.com/datasets/ziya07/remote-worker-productivity-dataset/data).This dataset was created to 
help research on how ML and AI could improve remote workers’ productivity. It simulates data on behavior, 
performance, and technology use from remote workers in a variety of industry sectors and geographical 
locations, including cities, towns, and villages. Demographic data, daily work behaviors, task completion 
metrics, AI-assisted tool use, and a computed productivity score are all included in the dataset. Three classes 
of productivity are notable by the final variable (productivity_label): High, Medium, and Low. 

Data Pre-processing using Missing Values and Z-Score normalization
The data pre-processing methods used in this research included missing values to clean the dataset and 

applying Z-score normalization to standardize the data. These steps ensured that the data was accurate and 
prepared for valuable testing.

Handling Missing values: the evaluation of missing values in this research was done to ensure the dataset’s 
completeness and reliability for accurate analysis. To preserve data integrity, missing data were treated by 
utilizing imputation methods, like substituting mean values for missing variables. The quality of the input data 
for efficient productivity prediction utilizing AI and ML models was enhanced by this procedure.
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Where n is the total amount of available observations. Following imputation, the suitable y values can be 
predicted using equation (2). The method for dealing with missing data is deletion, which involves removing 
records from the examination that have missing values for y.

Z-score Normalization: the Z-score normalization standardizes each feature has a mean of 0 and a Standard 
Deviation (SD) of 1. This transformation enhanced framework stability and performance by constantly centering 
and scaling the data. It helps to generate superior productivity forecast accuracy and reduced bias from 
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Where w is the innovative significance, w’ is the normalized value, mean (w) is the mean value of the feature 
w, and std(w) is the SD of w. One of the significant advantages of z-score normalization is its forcefulness to 
outliers compared to other normalization techniques. The preprocessing, including Z-score normalization and 
missing value imputation ensured clean and standardized data for analysis. These steps enhanced data quality 
and model’s accuracy, behind the research goal of using AI and ML to predict and develop remote worker 
productivity.

Feature Extraction using Principal Component Analysis (PCA)
The output of the pre-processed data was fed into PCA, to reduce dimensionality and extract the most 

relevant features. This transformation helped eliminate redundancy and improved computational efficiency. As 
a result, it supported the development of precise AI models for predicting remote worker productivity. 
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Equation (4) demonstrates how α’j is scaled by αj λj to update its value. This is frequently used to modify 
parameters in optimization.
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𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕⏟
𝜆𝜆

 (7) 

 

𝐺𝐺𝑎𝑎𝑦𝑦𝑛𝑛(𝐷𝐷, 𝑏𝑏) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

The raw values or scores are represented as bj’.e
bj’,The exponential function ∑ie

bj’ makes sure these scores 
are positive by transforming. These values are then normalized by the Soft-Max function, which converts them 
into probabilities βj. The weighting vector for the input vector for the fully connected layers is the coefficients 
vector derived from equation (5).

𝑛𝑛 = 𝑝𝑝𝑝𝑝 + 𝑎𝑎      (1) 
 

𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  ∑𝑦𝑦
𝑛𝑛        (2) 

 

𝑤𝑤′ = 𝑤𝑤−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑤𝑤)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)       (3) 

 

𝛼𝛼′
𝑗𝑗 = 𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗 (4) 

 

𝛽𝛽𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 − 𝑀𝑀𝑎𝑎𝑝𝑝(𝑏𝑏𝑗𝑗
′) = 𝑚𝑚𝑏𝑏𝑗𝑗

′

∑ 𝑚𝑚𝑏𝑏𝑗𝑗
′

𝑖𝑖
         (5) 

 

𝑌𝑌′
𝑗𝑗 = 𝑌𝑌𝑗𝑗𝛽𝛽𝑗𝑗      (6) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

⋯ … …
𝜕𝜕𝑌𝑌′

𝜕𝜕𝑌𝑌′

𝜕𝜕𝜕𝜕⏟
𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′⏟

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆′(𝜕𝜕′)

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕⏟
𝜆𝜆

 (7) 

 

𝐺𝐺𝑎𝑎𝑦𝑦𝑛𝑛(𝐷𝐷, 𝑏𝑏) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

The flattened convolutional layer vector, the fully connected layer input, and the weighting vector are 
represented by the variables Yj and βj. The previously stated, the Y’j vector has adjustable parameters for 
learning. The chain rules were applied in equation (6) to compute these parameters.

𝑛𝑛 = 𝑝𝑝𝑝𝑝 + 𝑎𝑎      (1) 
 

𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  ∑𝑦𝑦
𝑛𝑛        (2) 

 

𝑤𝑤′ = 𝑤𝑤−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑤𝑤)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)       (3) 

 

𝛼𝛼′
𝑗𝑗 = 𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗 (4) 

 

𝛽𝛽𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 − 𝑀𝑀𝑎𝑎𝑝𝑝(𝑏𝑏𝑗𝑗
′) = 𝑚𝑚𝑏𝑏𝑗𝑗

′

∑ 𝑚𝑚𝑏𝑏𝑗𝑗
′

𝑖𝑖
         (5) 

 

𝑌𝑌′
𝑗𝑗 = 𝑌𝑌𝑗𝑗𝛽𝛽𝑗𝑗      (6) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

⋯ … …
𝜕𝜕𝑌𝑌′

𝜕𝜕𝑌𝑌′

𝜕𝜕𝜕𝜕⏟
𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′⏟

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆′(𝜕𝜕′)

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕⏟
𝜆𝜆

 (7) 

 

𝐺𝐺𝑎𝑎𝑦𝑦𝑛𝑛(𝐷𝐷, 𝑏𝑏) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

The function of F change concerning is depicted by λ. Important components of the model are represented 
by the variables  Y’, β, and α. Each variable’s impact on the function is broken down by equation (7) how 
impacts β is influenced by Y’, and how α’ relates, all scaled by the factor λ. Every derivative clarifies how 
adjustments to one variable affect the final result. These combined steps enabled the development of precise 
AI models for predicting remote worker productivity and improving overall analysis accuracy.

Productivity of Remote Workers using Refined Random Natural Gradient Boosting (RR-NGboost)
The RR-NGboost method was employed to develop a highly accurate predictive model for remote worker 

productivity. To find trends and predict productivity, the anticipated hybrid approach evaluated performance 
and behavioral data. It improved prediction reliability by identifying difficult correlations in the data. The 
concept encouraged proactive management methods to improve the effectiveness of remote employment. The 
overall goal of RR-NGboost was to present perceptive information for maximizing output in various remote work 
environments.

Refined Random Forest
The Refined Random Forest (RR) was used in this research, to improve the prediction accuracy of remote 

worker productivity by improving feature selection and executive processes. This refined model focused on 
reducing overfitting and increasing the generalization capability across diverse remote work environments. 
It aimed to identify key productivity indicators through optimized tree structures. Overall, the technique 
supported precise analysis of behavioral and performance data.

𝑛𝑛 = 𝑝𝑝𝑝𝑝 + 𝑎𝑎      (1) 
 

𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  ∑𝑦𝑦
𝑛𝑛        (2) 

 

𝑤𝑤′ = 𝑤𝑤−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑤𝑤)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)       (3) 

 

𝛼𝛼′
𝑗𝑗 = 𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗 (4) 

 

𝛽𝛽𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 − 𝑀𝑀𝑎𝑎𝑝𝑝(𝑏𝑏𝑗𝑗
′) = 𝑚𝑚𝑏𝑏𝑗𝑗

′

∑ 𝑚𝑚𝑏𝑏𝑗𝑗
′

𝑖𝑖
         (5) 

 

𝑌𝑌′
𝑗𝑗 = 𝑌𝑌𝑗𝑗𝛽𝛽𝑗𝑗      (6) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

⋯ … …
𝜕𝜕𝑌𝑌′

𝜕𝜕𝑌𝑌′

𝜕𝜕𝜕𝜕⏟
𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′⏟

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆′(𝜕𝜕′)

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕⏟
𝜆𝜆

 (7) 

 

𝐺𝐺𝑎𝑎𝑦𝑦𝑛𝑛(𝐷𝐷, 𝑏𝑏) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

Equations (8) and (9), signify measures used in decision tree algorithms to evaluate the quality of a split. 
Here, D denotes the total dataset, while DC represents the subset of the dataset that falls into class C.|DC| is 
the proportion of samples in class C, which serves as a weight for the entropy or Gini calculation. In Equation 
(8), Ent(DC) refers to the entropy of class C, measuring the impurity, and in Equation (9), Gini(DC) denotes 
the Gini index for class C, another impurity measure. These formulas help in selecting the best attribute for 
splitting by minimizing impurity in child nodes.

𝑛𝑛 = 𝑝𝑝𝑝𝑝 + 𝑎𝑎      (1) 
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𝑛𝑛        (2) 
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′) = 𝑚𝑚𝑏𝑏𝑗𝑗

′

∑ 𝑚𝑚𝑏𝑏𝑗𝑗
′

𝑖𝑖
         (5) 

 

𝑌𝑌′
𝑗𝑗 = 𝑌𝑌𝑗𝑗𝛽𝛽𝑗𝑗      (6) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕
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|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

In equation (10), Ent(D) represents the entropy of dataset D, where pk is the prospect of classk, and |y| is 
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the total amount of classes. Equation (11) defines the Gini index, where pk and pk are class probabilities, and 
the expression simplifies to the sum of squared probabilities. Equation (12) expresses the constraint condition 
∞+β=1, ensuring proper probability division in model refinement.

Natural Gradient Boosting (NGboost)
The primary goal of this research was to improve the reliability of productivity prediction for remote workers 

through the implementation of the NGboost model. Through the estimation of complete prospect distributions 
as opposed to single point estimations, NGboost sought to accurately capture prediction uncertainty. It aimed 
to progress decision-making for management remote work settings by utilizing NGboost. In the end, NGboost 
achieve the principle of maximizing worker performance by making accurate and reliable forecasts.

𝑛𝑛 = 𝑝𝑝𝑝𝑝 + 𝑎𝑎      (1) 
 

𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  ∑𝑦𝑦
𝑛𝑛        (2) 

 

𝑤𝑤′ = 𝑤𝑤−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝑤𝑤)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)       (3) 

 

𝛼𝛼′
𝑗𝑗 = 𝛼𝛼𝑗𝑗𝜆𝜆𝑗𝑗 (4) 

 

𝛽𝛽𝑗𝑗 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 − 𝑀𝑀𝑎𝑎𝑝𝑝(𝑏𝑏𝑗𝑗
′) = 𝑚𝑚𝑏𝑏𝑗𝑗

′

∑ 𝑚𝑚𝑏𝑏𝑗𝑗
′

𝑖𝑖
         (5) 

 

𝑌𝑌′
𝑗𝑗 = 𝑌𝑌𝑗𝑗𝛽𝛽𝑗𝑗      (6) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

⋯ … …
𝜕𝜕𝑌𝑌′

𝜕𝜕𝑌𝑌′

𝜕𝜕𝜕𝜕⏟
𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕′⏟

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑆𝑆′(𝜕𝜕′)

𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕⏟
𝜆𝜆

 (7) 

 

𝐺𝐺𝑎𝑎𝑦𝑦𝑛𝑛(𝐷𝐷, 𝑏𝑏) = ∑ |𝐷𝐷𝐶𝐶|
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𝐶𝐶
𝐶𝐶−1 𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )   (8) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷, 𝑎𝑎) = ∑ |𝐷𝐷𝐶𝐶|
|𝐷𝐷|

𝐶𝐶
𝐶𝐶−1 𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷𝐶𝐶 )    (9) 

 

𝐸𝐸𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘𝑙𝑙𝑆𝑆𝑙𝑙2 𝑝𝑝𝑘𝑘   (10) 

𝐺𝐺𝑦𝑦𝑛𝑛𝑦𝑦(𝐷𝐷) − ∑  |𝑦𝑦|
𝑠𝑠−1 ∑ 𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘

′ = 1 ∑  |𝑦𝑦|
𝑠𝑠−1 𝑝𝑝𝑘𝑘

2 
𝐾𝐾′≠𝑘𝑘   (11) 

𝑠𝑠. 𝑟𝑟 { ∞ + 𝛽𝛽 = 1
0 ≤ ∞ + 𝛽𝛽 ≤ 1    (12) 

 

𝑙𝑙(𝜃𝜃, 𝑦𝑦) = −𝑙𝑙𝑆𝑆𝑙𝑙𝑄𝑄𝜃𝜃(𝑦𝑦),    (13) 
𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ ≤ 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋∀𝑇𝑇, 𝑄𝑄.  (14) 
𝐸𝐸𝑆𝑆(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊𝑇𝑇(𝑄𝑄, 𝑦𝑦)⌋ (15) 
 
 
𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0
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Equation (13) g(θ,y) represents the loss function, where Qθ (y) is the predicted probability distribution 
used to evaluate the accuracy of predictions. Equation (14) defines a constraint for risk minimization across 
all possible scoring rules T and distributions Q. Equation (15) shows ES (Q∥P), the statistical divergence or error 
between the predicted distribution Qand the true distribution P. These equations support the objective by 
optimizing model predictions for remote worker productivity through probabilistic forecasting in RR-NGboost.
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Equation (16) defines the expected loss EL(Q∥P) as the difference in expected values under distribution 
Q, which approximates the Kullback-Leibler divergence DKL(Q∥P), measuring how much-predicted outcomes 
deviate from actual ones. This helps the RR-NGboost model align predicted productivity patterns with true 
behaviors. Equation (17) defines the natural gradient.
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𝐸𝐸ℒ(𝑄𝑄 ∥ 𝑃𝑃) = 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ (𝑄𝑄, 𝑦𝑦)⌋ − 𝐹𝐹𝑦𝑦~𝑄𝑄⌊ℒ(𝑄𝑄, 𝑦𝑦)⌋ = 𝐹𝐹𝑦𝑦~𝑄𝑄 ⌊𝑙𝑙𝑆𝑆𝑙𝑙 𝑄𝑄(𝑦𝑦)

𝑃𝑃(𝑦𝑦)⌋ ≐  𝐷𝐷𝐾𝐾𝐾𝐾(𝑄𝑄 ∥ 𝑃𝑃)  (16) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆        (17) 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦).       (18) 
 

 ∇~ℒ(𝜃𝜃, 𝑦𝑦)𝛼𝛼 lim
𝜀𝜀→0

  𝑆𝑆:𝐷𝐷ℒ(𝑝𝑝𝜃𝜃∥𝑝𝑝𝜃𝜃+𝑑𝑑)=𝜖𝜖 
𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑆𝑆  

 
 ∇~ℒ(𝜃𝜃, 𝑦𝑦) ∝ 𝑇𝑇𝜀𝜀(𝜃𝜃) −1∇ℒ(𝜃𝜃, 𝑦𝑦) 

Figure 2. Probabilistic Scoring Framework of NGboost
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Guiding efficient and accurate updates, which directly supports refining of predictions in remote worker 
productivity models. The hybrid method in this research combines RR-NGboost, to improve prediction accuracy. 
By leveraging both ensemble learning and probabilistic modelling, the approach captures complex productivity 
patterns effectively. This integration supports robust forecasting of remote worker performance across diverse 
environments. Figure 2 illustrates the probabilistic scoring framework of NGboost.

The RR-NGboost method integrates random feature selection with natural gradient optimization to build 
robust predictive models. Aligned with this research’s objective, it effectively analyzes behavioral and 
performance patterns of remote workers. The hybrid approach enhances prediction accuracy and model 
stability. Consequently, it supports reliable forecasting and improvement of remote worker productivity through 
AI and ML. PseudoCode 1 illustrates the steps involved in proposed RR-NGboost algorithm to improve prediction 
accuracy of remote worker’s productivity.

Pseudocode 1: Analysis on prediction of productivity of remote workers using RR-NGboost 
Input:
    - Dataset D = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}
    - Number of boosting rounds M = 2
    - Learning rate η = 0,1
    - Initial predictive parameters θ₀ = (μ = 0,0, logσ = 0,0) for all samples
Procedure:
1. For each boosting round m = 1 to M:
    a. For each sample i = 1 to n:
        i.   Compute σᵢ = exp(logσᵢ)
        ii.  Compute gradients using Gaussian NLL:
∇μᵢ       = (μᵢ - yᵢ) / σᵢ²
∇logσᵢ   = 1 - ((yᵢ - μᵢ)² / σᵢ²)
        iii. Apply Randomization R:
             ĝμᵢ      = ∇μᵢ + GaussianNoise(0, 0,05)
             ĝlogσᵢ  = ∇logσᵢ + GaussianNoise(0, 0,05)
        iv.  Apply Refinement F:
             Clamp ĝμᵢ within [-1, 1]
             Clamp ĝlogσᵢ within [0, 2]
    b. Fit base learner hₘ(x) to predict:
        - Inputs: features xᵢ
        - Targets: gradients [ĝμᵢ, ĝlogσᵢ]
    c. Update predictive parameters:
        μᵢ       ← μᵢ - η * hₘ^μ(xᵢ)
        logσᵢ   ← logσᵢ - η * hₘ^logσ(xᵢ)
Output:
    - Final predictive model: for each xᵢ, return Gaussian(μᵢ, σᵢ²)

RESULTS
The performance of the proposed RR-NGboost model in predicting remote worker productivity is evaluated 

in this section. Key measures were utilized to assess the model’s accuracy and compare it with conventional 
methods. The outcomes demonstrate RR-NGboost’s overall advantage in providing reliable and accurate 
predictions across a range of remote work situations. Table 1 displays the experimental setup specifications. 
These results highlight the model’s reliability and its potential to improve productivity management in various 
contexts.

Table 1. Experimental Setup Specifications

Parameter Specification

Storage 512 GB SSD

RAM 16 GB

Programming Language Python 3.8+

Libraries Used TensorFlow, Keras, OpenCV, NumPy, 
Scikit-learn

Optimizers Adam, SGD

https://doi.org/10.56294/hl2025658

 7    Chen S

https://doi.org/10.56294/hl202535658


https://doi.org/10.56294/hl2025658

Performance Analysis of Proposed RR-NGboost
The RR-NGboost model was employed, to analyze performance and behavioral patterns, by assessing how AI 

and ML influences the productivity of remote workers. Figure 3 (a) reveals a strong positive correlation between 
focus time and productivity score, with low productivity workers focusing between 60–115 minutes (scores 25–
35), medium between 120–185 minutes (scores 35–45), and high productivity over 190 minutes (scores 45–55). 
Figure 3 (b) shows a balanced distribution across productivity labels: approximately 330 low, 320 medium, and 
310 high, supporting robust classifications. Figure 3 (c)displays the AUC-ROC curves for all classes-low, medium, 
and high-with each achieving a perfect AUC score of 1,00., indicating perfect classification accuracy by the 
RR-NGboost model. Figure 3 (d) highlights task completion rates, where low productivity yields a median of ~70 
%, medium ~85 %, and high ~97 %, confirming that higher productivity levels are consistently associated with 
better task completion. These findings underscore the effectiveness of AI and ML in predicting and enhancing 
productivity in remote work settings.

Figure 3. Productivity Patterns and Model Performance Overview: (a) Focus Time vs. Productivity Score, (b) Productivity 
Label Distribution: (c) AUC-ROC Curve, and (d) Task Completion Rate by Productivity Label

Figure 4 illustrates how AI-assisted planning and employee experience influence productivity outcomes 
using four subplots. Figure 4 (a) compares productivity labels across AI planning usage, showing that users 
(value = 1) have a higher count in the high productivity category. Figure 4 (b) demonstrates that AI-assisted 
planning correlates with productivity scores mostly above 40, indicating improved outcomes. Figure 4 (c) shows 
experience positively affects productivity employees with more experience (7–10 years) predominantly fall 
into the high score range (above 45). Figure 4 (d)presents a correlation matrix, where experience years and 
break frequency show positive and negative associations with productivity score (0,48 and –0,75 respectively), 
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revealing behavioral and temporal impacts. It collectively supports the hypothesis that AI tools and experience 
improve productivity by investigative categorical and numerical influences.

Figure 4. Influence of AI Planning and Experience on Productivity(a) Planning vs. Productivity Label, (b) Planning vs. 
Score, (c) Experience vs. Score by Label, (d) Feature Correlation

Comparative analysis proposed with existing techniques
The performance comparison of 3 existing models such as Linear Regression (LR)(20), Stochastic Gradient 

Descent (SGD) Regression,(20) Voting Regression (VR),(20) and the proposed RR-NGboost on predicting remote 
worker productivity using AI and ML techniques is illustrated in figure 5 and table 2. Figure 5 (a) represents Mean 
Absolute Error (MAE), where the proposed RR-NGboost model achieved the lowest error value, 0,4234 indicating 
higher prediction accuracy compared to other models. Figure 5 (b) shows Mean Square Error (MSE) values 
for each model. Again, RR-NGboost recorded the lowest MSE 0,3958, reinforcing its superiority in minimizing 
prediction errors. These results validate that RR-NGboost consistently outperforms traditional regression 
methods in both MAE and MSE metric. The model’s improved accuracy can be attributed to its robust handling of 
gradient updates and ensemble learning strategies, making it more suitable for complex remote work datasets. 

Table 2. Model Performance Comparison (MAE & MSE)

Model MAE MSE

LR(20) 0,4878 0,4682

SGD Regression(20) 0,4985 0,4514

VR(20) 0,5018 0,4559

RR-NGboost [Proposed] 0,4234 0,3958
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Figure 5. Performance Comparison of Regression Models on (a) MAE and (b) MSE Metrics

DISCUSSION
The proposed RR-NGboost model stands out in its evaluation against conventional regression methods, 

specifically in the context of predicting remote worker productivity. Traditional approaches such as Linear 
Regression (LR) often rely on assumptions of simple linear relationships across variables. This rigidity limits 
their ability to capture complex interactions and non-linear patterns inherent in real-world data, leading to 
suboptimal accuracy when myriad factors influence productivity outcomes.

Similarly, Stochastic Gradient Descent (SGD) Regression, while powerful, tends to exhibit instability during 
the training process and is highly sensitive to the scaling of input data. This susceptibility can result in erratic 
predictions, diminishing confidence in its application across varied scenarios. Moreover, methods like Variable 
Regression (VR), which blend multiple models to improve predictions, risk inheriting the weaknesses of those 
individual components, potentially undermining the anticipated benefits of ensemble strategies.

In contrast, the RR-NGboost model employs advanced techniques that systematically address these limitations. 
By leveraging gradient boosting methodologies, it adeptly captures intricate patterns and relationships within 
the dataset that traditional models often overlook. Consequently, the RR-NGboost model not only enhances 
prediction accuracy but also provides a more robust framework for understanding and forecasting productivity 
in remote working environments, ultimately fostering more data-driven decision-making in organizational 
contexts.

CONCLUSIONS
The objective of this research is to analyze behavior-performance trends in various regions to increase the 

productivity of remote workers. Productivity levels are predicted using the Refined Random Natural Gradient 
Boosting (RR-NGboost) model. The model’s MSE of (0,3958) and MAE of (0,4234) indicate great accuracy. The 
model’s generalizability can be impacted by the significant limits of the disparity in remote work conditions 
between industries and geographical areas. With the help of contextual factors like workplace culture, emotion 
recognition, and real-time feedback, the research opens the way for the development of flexible, industry-
specific AI models. Future development capacity also includes customized AI agents that suggest productivity 
interventions and optimize daily routines, further assisting staff members and organizational objectives.
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